
Policy Verification Using Metagraphs

Loïc Miller, Pascal Mérindol, Antoine Gallais and Cristel Pelsser
September 22, 2021

University of Strasbourg, France



Attacks enabled by an erroneous policy

• Razer (2017) [10].
• Improper permissions allowing public viewing of .bash_history,

eventually leaking database credentials.
• Facebook (2018) [7].

• Improper policy allowing third-party applications to become
admin of a page and remove the actual owner permanently.

1/12



Motivation

Access Control is an essential building block of security. Generally
managed by a policy administrator.

Policy
specification

Policy
implementation

Refinement

Translating a policy specification to its implementation is prone to
errors, even with the available semi-automatic or automatic
tools [1, 4, 6].

2/12



Objective: Policy verification

• Verify the implementation matches the
specification

• Pinpoint errors

2/12



Why metagraphs?

• Existing works dealing with policy verification use SAT
solvers [3], decision diagrams [5] or graphs [9].

SAT solvers Decision diagrams Graphs Metagraphs

Natural policy modeling ■ ◪ ◪ ■
Visual representation □ ◪ ◪ ■

• Properties specific to metagraphs for detecting conflicts and
redundancies1.

1Dinesha Ranathunga, Matthew Roughan, and Hung Nguyen. “Verifiable
Policy-Defined Networking using Metagraphs”. In: IEEE Transactions on Dependable
and Secure Computing (2020).

3/12



The metagraph: a collection of directed set-to-set mappings2

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

tenure > 2

tenure > 5

Employees (u1, u2) and tasks (create_form, fill_form,
review_form, transfer_money) are put into relation by the edges
(e1, e2, e3) between sets of elements.
2Amit Basu and Robert W Blanning. Metagraphs and their applications. Vol. 15.

Springer Science & Business Media, 2007.

4/12



Policy verification procedure3

Policy
specification

Policy
implementation

Specification
metagraph

Implementation
metagraphEquality?

Refinement

Random spec
generator

Conflict/Redundancy
checking

Policy
design

1

2

3

4

5

2
3
4
5

1 RandomWorkflowSpecGenerator
YawlToMetagraph / TriplesToMetagraph

RegoToMetagraph
SpecImplEquivalence

Tools

SpecToRego

Policy specification: YAWL, or metagraph-like format.
Policy implementation: Rego.

We can pinpoint errors in the policy.
3Data, code, and results publicly available. See https://zenodo.org/record/4912289.

5/12



Performance analysis 5

Policy
specification

Policy
implementation

Specification
metagraph

Implementation
metagraphEquality?

Refinement

Random spec
generator

Conflict/Redundancy
checking

Policy
design

1

2

3

4

5

6/12



Performance analysis 5

We measure the time required to compare two metagraphs.

• Random policies to get more robust results.
• Number of elements in the policy: 10, 20, 30, 50 or 100.
• Policy size: 2 or 4 propositions per edge.

→ 300 policy specifications (5 × 2 × 30)

• Translation error rate: 0.0, 0.2 and 0.4.
→ 27,000 policy implementations (300 × 3 × 30)

• 30 measures per implementation.
→ 810,000 measures (27000 × 30)

Rego policy files between 305 and 24729 lines of code, in line with
observed policies.

6/12



Time increases with number of elements and policy size

0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
0

5

10

15

20

25

30

35

Al
go

 d
ur

at
io

n 
(m

s)

2-policy 4-policy 2-policy 4-policy 2-policy 4-policy 2-policy 4-policy 2-policy 4-policy

10-set 20-set 30-set 50-set 100-set

• Verification times between 0 and 12 ms on average.
• Error rate has a negligible effect (correlation of 0.01).

7/12



Conclusion

• New policy verification method using metagraphs.

• Motivated the use of metagraphs to represent and verify
policies.

• Developed suite of tools4:
• RandomPolicySpecGenerator
• YawlToMetagraph / SpecToRego
• RegoToMetagraph
• SpecImplEquivalence

• Evaluated our method: verification times between 0 and 12
ms on average.

4Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12



Conclusion

• New policy verification method using metagraphs.
• Motivated the use of metagraphs to represent and verify

policies.

• Developed suite of tools4:
• RandomPolicySpecGenerator
• YawlToMetagraph / SpecToRego
• RegoToMetagraph
• SpecImplEquivalence

• Evaluated our method: verification times between 0 and 12
ms on average.

4Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12



Conclusion

• New policy verification method using metagraphs.
• Motivated the use of metagraphs to represent and verify

policies.
• Developed suite of tools4:

• RandomPolicySpecGenerator
• YawlToMetagraph / SpecToRego
• RegoToMetagraph
• SpecImplEquivalence

• Evaluated our method: verification times between 0 and 12
ms on average.

4Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12



Conclusion

• New policy verification method using metagraphs.
• Motivated the use of metagraphs to represent and verify

policies.
• Developed suite of tools4:

• RandomPolicySpecGenerator
• YawlToMetagraph / SpecToRego
• RegoToMetagraph
• SpecImplEquivalence

• Evaluated our method: verification times between 0 and 12
ms on average.

4Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12



Metagraphs for Policy Analysis

Goal: Identify redundancies in the policy.

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

tenure > 2

tenure > 5

M1({u1, u2}, {transfer_money}) = {e1, e2, e3} is not a simple
path, its a metapath.

9/12



Edge dominance

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

e1'

bypass
e4

e2' e5

tenure > 2

tenure > 2 &
user_is_employee

M1({u1}, {transfer_money}) = {e1, e2, e3, e4, e5} is not
edge-dominant because M2({u1}, {transfer_money}) = {e1, e2, e3}
is a metapath.

10/12



Input dominance

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

e1'

bypass
e4

e2' e5

tenure > 2

tenure > 2 &
user_is_employee

M1({u1, u2}, {transfer_money}) = {e′1, e′2, e3} is not
input-dominant because
M2({u1}, {transfer_money}) = {e1, e2, e3} is a metapath.

11/12



Usage of dominant metapaths

• Dominant metapaths identify essential elements.
• Elements not on any dominant metapath are redundant.

• Current solution computationally expensive (A∗) and partial
results.

12/12



Thank you!

12/12



[1] Amazon. AWS Policy Generator. 2020. url:
%5Curl%7Bhttps://awspolicygen.s3.amazonaws.com/policygen.html%7D
(visited on 11/11/2020).

[2] Amit Basu and Robert W Blanning. Metagraphs and their applications. Vol. 15.
Springer Science & Business Media, 2007.

[3] Padmalochan Bera, Soumya Kanti Ghosh, and Pallab Dasgupta. “Policy based
security analysis in enterprise networks: A formal approach”. In: IEEE
Transactions on Network and Service Management 7.4 (2010), pp. 231–243.

[4] Oliver Dohndorf et al. “Tool-supported refinement of high-level requirements
and constraints into low-level policies”. In: 2011 IEEE International Symposium
on Policies for Distributed Systems and Networks. IEEE. 2011, pp. 97–104.

[5] Mohamed G Gouda and Alex X Liu. “Structured firewall design”. In: Computer
networks 51.4 (2007), pp. 1106–1120.

[6] Kitti Klinbua and Wiwat Vatanawood. “Translating tosca into docker-compose
yaml file using antlr”. In: 2017 8th IEEE International Conference on Software
Engineering and Service Science (ICSESS). IEEE. 2017, pp. 145–148.

%5Curl%7Bhttps://awspolicygen.s3.amazonaws.com/policygen.html%7D


[7] Laxman Muthiyah. Hacking Facebook Pages. 2018. url:
https://thezerohack.com/hacking-facebook-pages (visited on
12/20/2020).

[8] Dinesha Ranathunga, Matthew Roughan, and Hung Nguyen. “Verifiable
Policy-Defined Networking using Metagraphs”. In: IEEE Transactions on
Dependable and Secure Computing (2020).

[9] Dinesha Ranathunga et al. “Malachite: Firewall policy comparison”. In: 2016
IEEE Symposium on Computers and Communication (ISCC). IEEE. 2016,
pp. 310–317.

[10] vulners. Razer US: Database credentials lea. 2017. url:
%5Curl%7Bhttps://vulners.com/hackerone/H1:293470%7D.

https://thezerohack.com/hacking-facebook-pages
%5Curl%7Bhttps://vulners.com/hackerone/H1:293470%7D

	Appendix

