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Attacks enabled by an erroneous policy

• Razer (2017) [10].
• Improper permissions allowing public viewing of .bash_history,

eventually leaking database credentials.
• Facebook (2018) [7].

• Improper policy allowing third-party applications to become
admin of a page and remove the actual owner permanently.
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Motivation

Access Control is an essential building block of security. Generally
managed by a policy administrator.

Policy
specification

Policy
implementation

Refinement

Translating a policy specification to its implementation is prone to
errors, even with the available semi-automatic or automatic
tools [1, 4, 6].
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Objective: Policy verification

• Verify the implementation matches the
specification

• Pinpoint errors
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Why metagraphs?

• Existing works dealing with policy verification use SAT
solvers [3], decision diagrams [5] or graphs [9].

SAT solvers Decision diagrams Graphs Metagraphs

Natural policy modeling ■ ◪ ◪ ■
Visual representation □ ◪ ◪ ■

• Properties specific to metagraphs for detecting conflicts and
redundancies1.

1Dinesha Ranathunga, Matthew Roughan, and Hung Nguyen. “Verifiable
Policy-Defined Networking using Metagraphs”. In: IEEE Transactions on Dependable
and Secure Computing (2020).
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The metagraph: a collection of directed set-to-set mappings2

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

tenure > 2

tenure > 5

Employees (u1, u2) and tasks (create_form, fill_form,
review_form, transfer_money) are put into relation by the edges
(e1, e2, e3) between sets of elements.
2Amit Basu and Robert W Blanning. Metagraphs and their applications. Vol. 15.

Springer Science & Business Media, 2007.
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Policy verification procedure3

Policy
specification

Policy
implementation

Specification
metagraph

Implementation
metagraphEquality?

Refinement

Random spec
generator

Conflict/Redundancy
checking

Policy
design
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2
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4

5

2
3
4
5

1 RandomWorkflowSpecGenerator
YawlToMetagraph / TriplesToMetagraph

RegoToMetagraph
SpecImplEquivalence

Tools

SpecToRego

Policy specification: YAWL, or metagraph-like format.
Policy implementation: Rego.

We can pinpoint errors in the policy.
3Data, code, and results publicly available. See https://zenodo.org/record/4912289.
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Performance analysis 5
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Performance analysis 5

We measure the time required to compare two metagraphs.

• Random policies to get more robust results.
• Number of elements in the policy: 10, 20, 30, 50 or 100.
• Policy size: 2 or 4 propositions per edge.

→ 300 policy specifications (5 × 2 × 30)

• Translation error rate: 0.0, 0.2 and 0.4.
→ 27,000 policy implementations (300 × 3 × 30)

• 30 measures per implementation.
→ 810,000 measures (27000 × 30)

Rego policy files between 305 and 24729 lines of code, in line with
observed policies.
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Time increases with number of elements and policy size
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• Verification times between 0 and 12 ms on average.
• Error rate has a negligible effect (correlation of 0.01).
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Conclusion

• New policy verification method using metagraphs.

• Motivated the use of metagraphs to represent and verify
policies.

• Developed suite of tools4:
• RandomPolicySpecGenerator
• YawlToMetagraph / SpecToRego
• RegoToMetagraph
• SpecImplEquivalence

• Evaluated our method: verification times between 0 and 12
ms on average.

4Code, data and guidance at https://github.com/loicmiller/policy-verification
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Metagraphs for Policy Analysis

Goal: Identify redundancies in the policy.

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

tenure > 2

tenure > 5

M1({u1, u2}, {transfer_money}) = {e1, e2, e3} is not a simple
path, its a metapath.
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Edge dominance

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

e1'

bypass
e4

e2' e5

tenure > 2

tenure > 2 &
user_is_employee

M1({u1}, {transfer_money}) = {e1, e2, e3, e4, e5} is not
edge-dominant because M2({u1}, {transfer_money}) = {e1, e2, e3}
is a metapath.
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Input dominance

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

e1'

bypass
e4

e2' e5

tenure > 2

tenure > 2 &
user_is_employee

M1({u1, u2}, {transfer_money}) = {e′1, e′2, e3} is not
input-dominant because
M2({u1}, {transfer_money}) = {e1, e2, e3} is a metapath.
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Usage of dominant metapaths

• Dominant metapaths identify essential elements.
• Elements not on any dominant metapath are redundant.

• Current solution computationally expensive (A∗) and partial
results.
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Thank you!
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