
Protection contre les fuites de données : un
environnement micro-services sécurisé

Loı̈c Miller1 †, Pascal Mérindol1, Antoine Gallais2 et Cristel Pelsser1

1Université de Strasbourg, 2UPHF / INSA Hauts-de-France

Les fuites de données au repos sont malheureusement courantes et en augmentation, entrainant des pertes de profits pour
les entreprises ou le non-respect de confidentialité de données personnelles sensibles. La récente montée en puissance
des micro-services, en tant que paradigme de déploiement extensible, impose également la sécurisation du trafic. Un
processus métier peut être modélisé sous la forme d’un workflow : le propriétaire des données interagit avec des sous-
traitants pour réaliser une séquence de tâches.
Dans cet article, nous montrons comment ces workflows peuvent être appliqués tout en limitant l’exposition des
données. En suivant les principes du zero-trust, nous proposons une infrastructure utilisant l’isolation fournie par les
micro-services pour mettre en œuvre un workflow, dans une preuve de concept disponible en ligne. Nous vérifions
ensuite que les politiques de sécurité sont correctement appliquées, et estimons le coût supplémentaire induit par les
dispositifs de sécurité.

Mots-clefs : fuites de données, workflow, microservices, sécurité

1 Introduction
The recent rise of microservices as a novel deployment paradigm increases the attack surface as well

as data leaks. Some attacks may come from inside the system, e.g., leaks stemming from the way data is
processed or caused by a malicious employee. The zero-trust security model, where all flows are required to
be authenticated and authorized via fine-grained policies, is an important step to shield from such attacks.

In accordance with such principles, we aim to achieve a secure system enabling the exchange of data
between non-trusted agents. The data should be secured at rest and in transport and cannot be exposed
by any agent in both cases. Our goal is to offer such guarantees in the context of workflows. We define a
workflow as a sequence of tasks to be performed by a set of independent actors. The owner of the data (i.e.,
the instigator of the workflow) interacts with contractors to realize such a sequence. Both the owner and the
contractor have agents processing the data (agents can represent an employee or an automatic service).

Let us consider a simple example of workflow (Fig. 1), where an owner in the post-production stage of
making a movie employs other companies to edit the video and audio components [BCK+03]. The owner
(O) first sends its data to the company responsible for special effects (C1 x). C1 x applies special effects to
the movie sequences the owner sent him, and then sends the result to the company responsible for coloring
(C2) as well as to another for sound mastering (C3). C2 then ships its result to the agent in charge of High
Dynamic Range (HDR) (C3) and sound mastering (C4). Finally, both C3 and C4 sends their output back to
the owner.

To meet our requirements for zero-trust and prevent data leaks, we rely on a secured microservice archi-
tecture. We isolate in containers the environment in which the agents execute their task. Each container is
secured thanks to traffic interception and access control enforcement. An orchestrator, a service mesh and
policy engines are deployed to enforce the workflow along with the access policies of the owner.

†This project has been made possible in part by a grant from the Cisco University Research Program Fund, an advised fund of
Silicon Valley Foundation.



Loı̈c Miller , Pascal Mérindol, Antoine Gallais et Cristel Pelsser

Related Works Existing works provide guidance on overall security requirements and strategies for mi-
croservices [Cha19]. Weever and Andreou [dWA20] implement zero-trust in a microservice environment,
and implement Cilium to enable deep traffic visibility. Contrary to our work, the authors neither explore
the use of authorization sidecars nor measure their cost. Accorsi et al. [AW11] use static flow analysis to
automate data leak detection in workflows. In our work, we consider such leaks within the microservice
paradigm and design a proof of concept to evaluate its overhead in term of performance.

Considering the problem at hand (Sec. 2), we specify our threat and security models. We describe our so-
lution and its companion proof of concept (Sec. 3). We finally evaluate the authorization overhead (Sec. 4).

2 Threat and security model
We consider a threat model from the point of view of each actor. The owner wants to avoid the leakage

of the data sent to the involved contractors. The threat here is then that an agent leaks the critical data to an
unauthorized party (or that the data is accessed by an adversary). On the other hand, a contractor does not
want the other actors, including the owner, to learn about their business intelligence.

Trust Model : Actors and Environment While the owner and contractors trust the organization of the
contractors to not intently bypass the system, looking at a finer grain, actors do not necessarily trust their
own agents or the ones of the other actors. Both the owner and the contractors need to trust the overall
environment on which the workflow is deployed. The third-parties (e.g. cloud providers) hosting parts of
the infrastructure are assumed not to try to gain access to the sensitive data. In summary, while the owner
and contractors trust the service deployment (actors are assumed to be curious but honest), the agents are
potentially malicious.

Attacker Model : External Attackers and Malicious Agents Taking into account the assets to protect
and our trust model, we consider three types of attackers in our model.

— External attacker : External to the workflow and the location of the deployed infrastructure. Such
attackers try to gain access to the data or the business intelligence from the outside.

— Co-located attacker : External to the workflow, but co-located at the deployment (e.g. an attacker
located in one of the third-party clouds). This co-located position opens more exploit options.

— Malicious agent : Internal to the workflow, this attacker tries to leak the data outside.

3 Infrastructure and Proof of Concept
Figure 1 illustrates how we arrange the elements of the microservice architecture ‡. Each actor has its own

deployment space (clouds) while internal agents are depicted as boxes (e.g. C1 1 is an agent of contractor
C1). A control plane in each space controls the service mesh. Each agent is a pod, containing the service
(i.e., the environment the agent will be using), a proxy and a policy sidecar. The access policies of a service
are pushed in its associated policy sidecar. The proxy sidecar intercepts all traffic coming from and going
to the associated service and the policy sidecar checks whether it shall be authorized or not.

The service mesh controller and the policy store are under the control of the owner. It specifies the policy
to be enforced, preventing in particular the data from leaking outside. The data processed by the pods are
stored encrypted on mounted Persistent Volumes (PVs), providing us with data security at rest. Pods also
communicate according to the specified workflow and policy via mTLS, providing us with data security in
transport. Communications inside a pod are not encrypted, but the isolation layers protect the data against
eavesdroppers.

Proof of Concept We implemented the above infrastructure by reproducing the workflow of Fig. 1. The
complete data, code as well as guidance to realize this Proof of Concept are publicly available §. We use
Docker for our containers, Kubernetes for our orchestration layer, Istio as our service mesh. Finally, we rely
on Envoy and Open Policy Agent for the proxy and policy sidecars respectively.

‡. See https ://arxiv.org/abs/2012.06300 for more details.
§. See https ://github.com/loicmiller/secure-workflow.



Un environnement micro-services contre les fuites de données

Movie

O

VFX_2

Proxy

C1_1

Policy

HTTP

HTTP
VFX_1

Proxy

C1_0

Policy

HTTP

HTTP

VFX_3

Proxy

C1_2

Policy

HTTP

HTTP

m
TLS

mTLS

mTLS

m
TLS

(2)

(3)

(4)

(5)

mTLS
(1)

HDR

C3

Color

C2

Sound
Master

C4

mTLS
(6)

mTLS
(7)

m
TLS
(8)

FIGURE 1: Our proposed secure infrastructure.

This infrastructure was deployed on Google Cloud Platform (GCP), using one cluster for each actor of
the workflow, for a total of five clusters. Each cluster runs one n1-standard-2 node (2 vCPUs, 7.5 GB of
memory), on version 1.14.10-gke.36, except the cluster of the owner which runs two of them, since running
the control plane requires additional resources. The clusters for the owner, color and VFX are located in the
us-central1-f region whereas the clusters for HDR and sound are located in us-west2-b.

Test framework We developed an evaluation framework to check the overall security : encrypted traffic,
isolation inside a pod, and the policy enforcement. To do so, we capture traffic on every network interface of
the service mesh and try to perform each possible communication. Fig. 2 shows the path a communication
takes inside the service mesh, as well as whether traffic is encrypted or not. Traffic going to/coming from the
loopback is unencrypted, whereas traffic going to/coming from the external interface should be encrypted.
Our captures show that this is indeed the case. We also check that authorization is correctly enforced :
we extract authorizations from the OPA policy configuration, and then generate and test the access control
matrix. The complete code for the test framework is publicly available §.

Service A

Proxy

Source

Policy

HTTP

lo

eth0

Request
Response

Service C

Proxy

Bystander

Policy

HTTP

HTTP

lo

eth0

Service B

Proxy

Destination

Policy

HTTP

lo

eth0

FIGURE 2: Detailed view of pods and the communication flow.

4 The Overhead of Security
In this section, we analyze the performance overhead added by the policy sidecar enforcing security. We

measure the pod startup time and the request duration (between each couple of connected pods).

Startup time We first evaluate the impact of having an additional container for OPA on the startup time
of pods. An independent-samples t-test was conducted to compare startup times in a deployment of our PoC
with or without OPA. We gathered 130 observations per pod and per deployment (N = 1820 in total).



Loı̈c Miller , Pascal Mérindol, Antoine Gallais et Cristel Pelsser

4 5 6 7 8 9 10 11 12 14
Startup time (s)

0

50

100

150

200

250

300

350

Nu
m

be
r o

f o
bs

er
va

tio
ns

no OPA
M = 5.93, SD = 0.88
OPA
 M = 7.87, SD = 1.03

FIGURE 3: Distribution of startup time in deploy-
ments with/without OPA.

no OPA all allow minimal +100 +1000
0

20

40

60

80

100

120

Re
qu

es
t d

ur
at

io
n 

(m
s)

Intra-region
Inter-region

FIGURE 4: Spread of request duration in intra and
inter-region communications by policy size.

Fig. 3 allows to measure the cost on the initial deployment by comparing the distribution of startup
times (with or without OPA deployed). The group with the OPA sidecar exhibits significantly higher startup
times compared to the group without the OPA sidecar, t(1818) = 43.19, p < 0.001. Pods with OPA have a
substantial increase in startup time of almost two seconds on average, i.e., 32.72% of the startup time.

Request time To test whether the policy is scalable for more complex workflows, we measure the in-
fluence of policy size on communications. A one-way between subjects ANOVA was conducted for each
type of communication (intra/inter region) to compare the effect of policy size on request duration in five
increasing orders of policy size : no opa, all allow, minimal, +100 (rules) and +1000 (rules).

For each ANOVA, we gathered 40 observations per authorized communication per level of policy (N =
1600 in total). Fig. 4 shows the distribution of request duration for each policy size. For intra-region com-
munications, there is a significant difference in request duration among the five scenarios of policy de-
ployments, F(4,795) = 364.05, p < 0.001,η2

p = 0.65. For inter-region communications there also exists
a significant difference (in request duration) among the five scenarios of policy deployments, albeit with a
lesser effect : F(4,795) = 15.23, p < 0.001,η2

p = 0.07 ¶.
While our results suggest that a higher policy size increases request duration, it should be noted that

this size should be strongly increased in order to observe an effect. With inter-region communications in
particular, incremental increases in policy size do not appear to have a significant effect on request duration.

5 Conclusion
In this work, we described and implemented a secure architecture that prevents data leaks and protects

business intelligence. We achieve a secure system guaranteeing the data is secure at rest, in transport and
cannot be leaked by any agent in both cases. We realized a proof of concept of our architecture to discuss
its benefits and limitations, and monitored key parts of the workflow to show how the data is secured. Our
infrastructure is resilient to the set of attacks considered in our security model. Our experiments finally show
that our approach scales well with the increasing number of rules which reflects workflow complexity.

Références
[AW11] Rafael Accorsi and Claus Wonnemann. Strong non-leak guarantees for workflow models. In

Proceedings of the 2011 ACM Symposium on Applied Computing, pages 308–314, 2011.
[BCK+03] Simon Byers, Lorrie Cranor, Dave Korman, Patrick McDaniel, and Eric Cronin. Analysis of

security vulnerabilities in the movie production and distribution process. In Proceedings of the
3rd ACM workshop on Digital rights management, pages 1–12. ACM, 2003.

[Cha19] Ramaswamy Chandramouli. Security strategies for microservices-based application systems.
Technical report, 2019.

[dWA20] Catherine de Weever and Marios Andreou. Zero trust network security model in containerized
environments. 2020.

¶. See https ://github.com/loicmiller/secure-workflow for full data, code and statistical analysis in the form of jupyter notebooks.


