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Abstract—Companies like Netflix increasingly use the cloud to
deploy their business processes. Those processes often involve
partnerships with other companies, and can be modeled as
workflows. This shift towards the cloud environment has led to
more and more data leaks and breaches, resulting in huge losses
of money for businesses like the movie industry, as well as a loss
of user privacy for businesses dealing with user data like the
pharmaceutical industry.

In this paper, we show how those workflows can be enforced
while preventing data exposure. Following the principles of zero-
trust, we develop an infrastructure using the isolation provided
by a microservice architecture, to enforce owner policy. We show
that our infrastructure is resilient to the set of attacks considered
in our security model. We implement a simple, yet realistic,
workflow with our infrastructure in a publicly available proof
of concept. We then verify that the specified policy is correctly
enforced by testing the deployment for policy violations, and
estimate the overhead cost of authorization.

Index Terms—data leak, data breach, workflow, microservices,
authorization, security

I. INTRODUCTION

Data leaks and breaches are increasingly happening. With
more and more businesses using public clouds to process
data [1], and this data being frequently moved around, expo-
sures are more likely to happen than ever. Those exposures
are perceived as huge losses of money for businesses like
the movie industry [2], and as a loss of user privacy for
applications dealing with user data [3]. Malicious actors have
been responsible for most incidents, but accidental exposure
of data on the Internet (e.g. misconfigured databases, backups,
end points, services) has put the most records at risk [4].

Even though both data breaches and data leaks result in
data being exposed to unauthorized entities, the way this data
is exposed is different. On one hand, data breaches refer to the
unauthorized access of data by exploiting flaws in the security
of the breached system. Data breaches can happen with data
at rest [5] where attackers exploit a flaw to gain access to the
data, or in transport [6], where attackers exploit a vulnerability
to eavesdrop on traffic. On the other hand, data leaks refer to
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the exposure of data belonging to an entity, due to the way this
data is processed by this entity, by a mistake [7], or caused
by malicious behavior [8].

The recent rise of microservices as a paradigm, and their
increased use in building large, cloud-based enterprise applica-
tions [9] has increased the attack surface, meaning protecting
the network border is no longer sufficient. To prevent data
leaks, one needs to consider attacks coming from inside the
system (e.g. leaks stemming from the way data is processed
or caused by a malicious employee). The zero-trust security
model [10], where all traffic flows are required to be authen-
ticated and authorized via fine-grained policies, provides such
protection.

In accordance with such principles, we aim to achieve a
secure system enabling the exchange of data between non-
trusted agents in the context of workflows. The data should
be secured at rest and in transport and cannot be exposed by
any agent in both cases. To meet our requirements for zero-
trust and prevent data leaks during the execution of workflows,
we rely on a secured microservice architecture.

The microservice architecture allows us to design a system
preventing data exposures that is simple, modular and scalable,
thanks to its loosely coupled services. This is important when
considering security mechanisms quickly become challenging
to configure, manage, scale and monitor when combined, with
a large number of actors using different IT environments.

We define a workflow as a sequence of tasks to be performed
by a set of independent actors. The owner of the data (i.e.,
the instigator of the workflow) interacts with contractors to
realize such a sequence. Both the owner and the contractor
have agents processing the data, where agents can represent
an employee or an automatic service.

Let us consider a simple example of workflow (Fig. 1),
where an owner in the post-production stage of making a
movie employs other companies to edit the video and audio
components [2]. The owner (O) first sends its data to the
company responsible for special effects (C1 x). C1 x applies
special effects to the movie sequences the owner sent him, and
then sends the result to the company responsible for coloring
(C2) as well as to another for sound mastering (C3). C2 then
ships its result to the agent in charge of High Dynamic Range
(HDR) (C3) and sound mastering (C4). Finally, both C3 and978-1-6654-4005-9/21/$31.00 ©2021 European Union



C4 sends their output back to the owner.
We isolate in containers the environment in which the agents

execute their tasks. Each container is secured thanks to traffic
interception and access control enforcement. An orchestrator,
a service mesh and policy engines are deployed to enforce the
workflow along with the access policies of the owner.

Considering the problem at hand (Sec. II), we specify our
threat and security models. We describe our solution and its
companion proof of concept (Sec. III). We finally evaluate the
authorization overhead (Sec. IV), review related works (Sec. V
and conclude (Sec. VI).

II. THREAT AND SECURITY MODEL

We consider a threat model from the point of view of each
actor. The owner wants to avoid the leakage of the data sent to
the involved contractors. The threat here is then that an agent
leaks the critical data to an unauthorized party (or that the data
is accessed by an adversary). On the other hand, a contractor
does not want the other actors, including the owner, to learn
about their business intelligence.

Trust Model – Actors and Environment: While the owner
and contractors trust the organization of the contractors to not
intently bypass the system, looking at a finer grain, actors
do not necessarily trust their own agents or the ones of the
other actors. Both the owner and the contractors need to trust
the overall environment on which the workflow is deployed.
The third-parties (e.g. cloud providers) hosting parts of the
infrastructure are assumed not to try to gain access to the
sensitive data. In summary, while the owner and contractors
trust the service deployment (actors are assumed to be curious
but honest), the agents are potentially malicious.

Attacker Model – External Attackers and Malicious
Agents: Taking into account the assets to protect and our trust
model, we consider three types of attackers in our model.

• External attacker: External to the workflow and the
location of the deployed infrastructure. Such attackers try
to gain access to the data or the business intelligence from
the outside.

• Co-located attacker: External to the workflow, but co-
located at the deployment (e.g. an attacker located in one
of the third-party clouds). This co-located position opens
more exploit options.

• Malicious agent: Internal to the workflow, this attacker
tries to leak the data outside.

III. INFRASTRUCTURE AND PROOF OF CONCEPT

We propose an infrastructure to protect a workflow execu-
tion from the threats expressed in Sec. II. As we need a way
to prevent data leaks, we need to control the communications
an agent can engage in. To achieve this, we need to control the
environments the agents will be using, to make sure that all
the actions of an agent follow a policy enforced by the owner.
In this infrastructure, agents of our workflow are mapped
to containers, which are then used in conjunction with an
orchestrator, a service mesh and policy engines to enforce the
policy of the owner.

Figure 1 illustrates how we arrange the elements of the mi-
croservice architecture1. We use the microservice architecture
to make our solution pratical and easily deployable. Each actor
has its own deployment space (clouds) while internal agents
are depicted as boxes (e.g. C1 1 is an agent of contractor C1).
Each agent is a pod, containing multiple containers: the service
(i.e., the environment the agent will be using), a proxy and a
policy sidecar. The access policies of a service are pushed in
its associated policy sidecar. The proxy sidecar intercepts all
traffic coming from and going to the associated service and
the policy sidecar checks whether it shall be authorized or not.

The service mesh controller and the policy store are under
the control of the owner. It specifies the policy to be enforced,
preventing in particular the data from leaking outside. The
data processed by the pods are stored encrypted on mounted
Persistent Volumes (PVs), providing us with data security at
rest. Pods also communicate according to the specified work-
flow and policy via mTLS, providing us with data security in
transport. Communications inside a pod are not encrypted,
but the isolation layers protect the data against eavesdroppers.

Proof of Concept: We implemented the above infrastruc-
ture by reproducing the workflow of Fig. 1. The complete data,
code as well as guidance to realize this Proof of Concept are
publicly available2. We use Docker [11] for our containers,
Kubernetes [12] for our orchestration layer, Istio [13] as our
service mesh. Finally, we rely on Envoy [14] and Open Policy
Agent [15] for the proxy and policy sidecars respectively.

This infrastructure was deployed on Google Cloud Platform
(GCP), using one cluster for each actor of the workflow, for
a total of five clusters. Each cluster runs one n1-standard-
2 node (2 vCPUs, 7.5 GB of memory), on version 1.14.10-
gke.36, except the cluster of the owner which runs two
of them, since running the control plane requires additional
resources. The clusters for the owner, color and VFX are
located in us-central1-f whereas the clusters for HDR and
sound are located in us-west2-b.

Test framework: We developed an evaluation framework
to check the overall security: encrypted traffic, isolation inside
a pod, and the policy enforcement. To do so, we capture traffic
on every network interface of the service mesh and try to
perform each possible communication. Fig. 2 shows the path
a communication takes inside the service mesh, as well as
whether traffic is encrypted or not. According to the pod type
(source, destination or bystander) and the interface (loopback
or external), we need to verify different things:

• Source / Destination loopback: we verify that a com-
munication between the source and the destination is
occurring (i.e., correct IP addresses and ports). We need
to verify that the request in the capture corresponds to the
request we are testing for (GET or POST). The response
needs to be in accordance with the policy: in this case,
’403 Forbidden’ if the policy was ’deny’ and ’200 OK’
(GET) or ’201 OK’ (POST) if the policy was ’allow’.

1See https://arxiv.org/abs/2012.06300 for more details.
2See https://github.com/loicmiller/secure-workflow.
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Fig. 1: Our proposed secure infrastructure. Each actor is represented by a cloud, and each agent by a box. Each box corresponds
to a Pod, containing the service, the proxy and the policy sidecar.

• Source / Destination external interface: we verify that
a communication between the source and the destination
is occurring (correct IP addresses and ports). We need
to verify that the traffic is encrypted by mTLS, and not
passed in clear text.

• Bystander loopback and external interface: we verify
that no communication between the source and the des-
tination is occurring, whether encrypted or unencrypted.

Traffic going to/coming from the loopback is unencrypted,
whereas traffic going to/coming from the external interface
should be encrypted. Our captures show that this is indeed the
case. We also check that authorization is correctly enforced:
we extract authorizations from the OPA policy configuration,
and then generate and test the access control matrix. The
complete code for the test framework is publicly available2.
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Fig. 2: Detailed view of pods and the communication flow.

IV. THE OVERHEAD OF SECURITY

In this section, we analyze the performance overhead added
by the policy sidecar enforcing security. We measure the pod
startup time and the request duration (between each couple of
connected pods).

Startup time: we first evaluate the impact of having an
additional container for OPA on the startup time of pods. An
independent-samples t-test was conducted to compare startup

times in a deployment of our PoC with or without OPA. We
gathered 130 observations per pod and per deployment (N =
1820 in total).

Fig. 3 allows to measure the cost on the initial deployment
by comparing the distribution of startup times (with or without
OPA deployed). The group with the OPA sidecar exhibits sig-
nificantly higher startup times compared to the group without
the OPA sidecar, t(1818) = 43.19, p < 0.001. Pods with
OPA have a substantial increase in startup time of almost
two seconds on average, i.e., 32.72% of the startup time.
More in details, the effect size for this analysis, d = 1.985,
was found to exceed Cohen’s convention for a large effect
(d = 0.80). Running a post hoc power analysis also reveals a
high statistical power, 1− β > 0.999.

Request time: To test whether the policy is scalable for
more complex workflows, we measure the influence of policy
size on communications. A one-way between subjects ANOVA
was conducted for each type of communication (intra/inter
region) to compare the effect of policy size on request dura-
tion in five increasing orders of policy size: no opa, all
allow, minimal, +100 (rules) and +1000 (rules).

The no opa policy deployment corresponds to having no
OPA container at all. The all allow policy deployment cor-
responds to having no rules and allowing all communications
by default. The minimal policy deployment corresponds to
having the default minimal number of rules to enforce the
workflow of the PoC. The +100 and +1000 correspond to the
minimal policy being inflated respectively with 100 additional
rules (+147%) and 1000 additional rules (+1470%), with
additional rules being obligatorily evaluated by OPA.

For each ANOVA, we gathered 40 observations per au-
thorized communication per level of policy (N = 1600 in
total). Fig. 4 shows the distribution of request duration for
each policy size. For intra-region communications, there is
a significant difference in request duration among the five
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Fig. 3: Distribution of startup time in deployments
with/without OPA.
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Fig. 4: Spread of request duration in intra and inter-region
communications by policy size.

scenarios of policy deployments, F (4, 795) = 364.05, p <
0.001, η2p = 0.65. For inter-region communications there also
exists a significant difference (in request duration) among the
five scenarios of policy deployments, albeit with a lesser effect:
F (4, 795) = 15.23, p < 0.001, η2p = 0.073.

While our results suggest that a higher policy size increases
request duration, it should be noted that this size should be
strongly increased in order to observe an effect. This effect is
minor in inter-region communications. In summary, the added
security provided by the workflow enforcement costs pods two
seconds of startup time on average, and either 7% or 65% of
the variance in request duration.

V. RELATED WORKS

Existing works provide guidance on overall security require-
ments and strategies for microservices [16], as well as guid-
ance on more specific microservices components like service
mesh [9], [17] or containers [18], [19]. Chandramouli [16]
provides guidance on security strategies for implementing
core features of microservices, as well as countermeasures for
microservices-specific threats. We follow the guidelines and
recommendations presented in these works. Contrary to those
works, we propose a complete infrastructure, accompanied by
a real-world deployment, as well as both a security and a
performance evaluation of this deployment.

Weever et al. [20] investigate operational control require-
ments for zero-trust network security, and then implement
zero-trust security in a microservice environment to protect
and regulate traffic between microservices. They focus on
implementing deep visibility in the service mesh, and do
not propose a security or a performance evaluation. Hussain
et al. [21] propose and implement a security framework
for the creation of a secure API service mesh using Istio
and Kubernetes. They then use a machine learning based
model to automatically associate new APIs to already existing
categories of service mesh. Contrary to our work, they use
a central enterprise authorization server, in opposition to our
policy sidecars. Zaheer et al. [22] propose eZTrust, a policy-
driven perimeterization access control system for containerized

3See https://github.com/loicmiller/secure-workflow for full data, code and
statistical analysis in the form of jupyter notebooks.

microservices environments. They leverage eBPF to apply per-
packet tagging depending on the security context, and then use
those tags to enforce policy, in opposition to our enforcement
of policy which relies on policy sidecars local to the services.

On the side of formal analysis of data leaks in work-
flows, Accorsi and Wonnemann [23] proposed a framework
for the automated detection of leaks based on static flow
analysis by transforming workflows into Petri nets. Some
papers propose data leak protection, by screening data and
comparing fingerprints [24]–[30]. Segarra et al. [31] propose
an architecture to securely stream medical data using Trusted
Execution Environments, while Zuo et al. investigate data
leakage in mobile applications interaction with the cloud [32].

VI. CONCLUSION

In this work, we described and implemented a secure
architecture that prevents data leaks and protects business
intelligence in the cloud. More specifically, in accordance
with the principles of zero-trust, we achieve a secure system
that enables the exchange of data between non-trusted agents
while guaranteeing this data is secure at rest, in transport and
cannot be leaked by any agent in both cases. The workflow
is defined by the owner and enforced using policy sidecars,
which controls the agents participating in the workflow. We
realized a proof of concept of our architecture to discuss
its benefits and limitations, and monitored key parts of the
workflow to show how the data is secured. Our experiments
finally show that our approach scales well with increasing
workflow complexity.

In the future, we plan to study how changes in the workflow
impact the security of the system. Some work could also be
done on the removal of trust requirements, by adding Trusted
Execution Environments to our infrastructure, or on how to
handle frequent user interactions with the system. This would
provide us with a fully secure environment, so that even an
actor with administration rights on the machine cannot peek
at the data. Even though the data in our infrastructure is
encrypted at rest, this would also give us another guarantee
that the data of the owner and the business intelligence of the
contractors are secure for any processing task.
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