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Attacks enabled by an erroneous policy

= Razer (2017) [10].

= Improper permissions allowing public viewing of .bash__history,
eventually leaking database credentials.

= Facebook (2018) [7].

= Improper policy allowing third-party applications to become
admin of a page and remove the actual owner permanently.

1/12



Access Control is an essential building block of security. Generally

managed by a policy administrator.

Policy Refinement Policy

implementation

specification

Translating a policy specification to its implementation is prone to
errors, even with the available semi-automatic or automatic
tools [1, 4, 6].
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Objective: Policy verification

Verify the implementation matches the
specification

Pinpoint errors



Why metagraphs?

= Existing works dealing with policy verification use SAT
solvers [3], decision diagrams [5] or graphs [9].

SAT solvers Decision diagrams Graphs Metagraphs
Natural policy modeling | d 4 |
Visual representation O | 4 |

= Properties specific to metagraphs for detecting conflicts and

redundancies!.

IDinesha Ranathunga, Matthew Roughan, and Hung Nguyen. “Verifiable
Policy-Defined Networking using Metagraphs”. In: |[EEE Transactions on Dependable

and Secure Computing (2020).
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he metagraph: a collection of directed set-to-set mappings?

tenure > 2 create_form

€4

transfer_money

e
tenure > 5 3
€2

Employees (u1, up) and tasks (create_form, fill_form,
review__form, transfer_money) are put into relation by the edges
(e1, €2, €3) between sets of elements.

2Amit Basu and Robert W Blanning. Metagraphs and their applications. \ol. 15.
Springer Science & Business Media, 2007.
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Policy verification procedure®

Random spec

generator
'19)
f Policy | Refinement | Policy Tools
specification implementation (@ RandomWorkflowSpecGenerator
Policy b : ) @ : @ YawlToMetagraph / TriplesToMetagraph
design (@ SpecToRego

Specification
metagraph

Equality?-> 'MPlementation @ RegoToMetagraph
q@ ¥ metagraph (B SpeclmplEquivalence

Policy specification: YAWL, or metagraph-like format.

Policy implementation: Rego.

We can pinpoint errors in the policy.
3Data, code, and results publicly available. See https://zenodo.org/record /4912289.
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Performance analysis @

- /
A4 v

4Specification . Implementation
> Equality?
metagraph ® metagraph
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Performance analysis @

We measure the time required to compare two metagraphs.

= Random policies to get more robust results.
= Number of elements in the policy: 10, 20, 30, 50 or 100.

= Policy size: 2 or 4 propositions per edge.
— 300 policy specifications (5 x 2 x 30)

= Translation error rate: 0.0, 0.2 and 0.4.
— 27,000 policy implementations (300 x 3 x 30)

= 30 measures per implementation.
— 810,000 measures (27000 x 30)

Rego policy files between 305 and 24729 lines of code, in line with
observed policies.
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Time increases with number of elements and policy size

.t
E, Iﬁ
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2-policy | 4-policy | 2-policy | 4-policy | 2-policy | 4-policy | 2-policy
10-set 20-set 30-set 50-set 100-set

4-policy | 2-policy | 4-policy

= Verification times between 0 and 12 ms on average.

= Error rate has a negligible effect (correlation of 0.01).
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Conclusion

= New policy verification method using metagraphs.

4Code, data and guidance at https://github.com/loicmiller/policy-verification
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Conclusion

= New policy verification method using metagraphs.

= Motivated the use of metagraphs to represent and verify
policies.
= Developed suite of tools*:

= RandomPolicySpecGenerator

= YawlToMetagraph / SpecToRego
= RegoToMetagraph

= SpeclmplEquivalence

= Evaluated our method: verification times between 0 and 12

ms on average.

4Code, data and guidance at https://github.com/loicmiller/policy-verification
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Metagraphs for Policy Analysis

Goal: Ildentify redundancies in the policy.

tenure > 2 create_form

€1

transfer_money

e
tenure > 5 3
€2

My ({u1, ua}, {transfer_money}) = {e1, 2, €3} is not a simple
path, its a metapath.
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Edge dominance

tenure > 2

create_form
tenure > 2 &

user_is_employee @

eo . review_form
€ >
““““

My ({u1}, {transfer_money}) = {e1, e, €3, €4, €5} is not

e

transfer_money
€3

.
.
.
.
.
.

edge-dominant because
is a metapath.

10/12



Input dominance

tenure > 2
eq create_form

_______ e1 | cocooo
user_is_employee es

My ({u1, u2}, { transfer_money}) = {€,, €,, e3} is not
input-dominant because

is a metapath.
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Usage of dominant metapaths

= Dominant metapaths identify essential elements.

= Elements not on any dominant metapath are redundant.

= Current solution computationally expensive (A*) and partial
results.
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Thank you!
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