Policy Verification Using Metagraphs

Loic Miller, Pascal Mérindol, Antoine Gallais and Cristel Pelsser

September 22, 2021

University of Strasbourg, France

Université iC‘JBE

H ’ de Strasbourg

Attacks enabled by an erroneous policy

= Razer (2017) [10].

= Improper permissions allowing public viewing of .bash__history,
eventually leaking database credentials.

= Facebook (2018) [7].

= Improper policy allowing third-party applications to become
admin of a page and remove the actual owner permanently.

1/12

Access Control is an essential building block of security. Generally

managed by a policy administrator.

Policy Refinement Policy

implementation

specification

Translating a policy specification to its implementation is prone to
errors, even with the available semi-automatic or automatic
tools [1, 4, 6].

2/12

Objective: Policy verification

Verify the implementation matches the
specification

Pinpoint errors

Why metagraphs?

= Existing works dealing with policy verification use SAT
solvers [3], decision diagrams [5] or graphs [9].

SAT solvers Decision diagrams Graphs Metagraphs
Natural policy modeling | d 4 |
Visual representation O | 4 |

= Properties specific to metagraphs for detecting conflicts and

redundancies!.

IDinesha Ranathunga, Matthew Roughan, and Hung Nguyen. “Verifiable
Policy-Defined Networking using Metagraphs”. In: |[EEE Transactions on Dependable

and Secure Computing (2020).
3/12

he metagraph: a collection of directed set-to-set mappings?

tenure > 2 create_form

€4

transfer_money

e
tenure > 5 3
€2

Employees (u1, up) and tasks (create_form, fill_form,
review__form, transfer_money) are put into relation by the edges
(e1, €2, €3) between sets of elements.

2Amit Basu and Robert W Blanning. Metagraphs and their applications. \ol. 15.
Springer Science & Business Media, 2007.

4/12

Policy verification procedure®

Random spec

generator
'19)
f Policy | Refinement | Policy Tools
specification implementation (@ RandomWorkflowSpecGenerator
Policy b :) @ : @ YawlToMetagraph / TriplesToMetagraph
design (@ SpecToRego

Specification
metagraph

Equality?-> 'MPlementation @ RegoToMetagraph
q@ ¥ metagraph (B SpeclmplEquivalence

Policy specification: YAWL, or metagraph-like format.

Policy implementation: Rego.

We can pinpoint errors in the policy.
3Data, code, and results publicly available. See https://zenodo.org/record /4912289.

5/12

Performance analysis @

- /
A4 v

4Specification . Implementation
> Equality?
metagraph ® metagraph

6/12

Performance analysis @

We measure the time required to compare two metagraphs.

= Random policies to get more robust results.
= Number of elements in the policy: 10, 20, 30, 50 or 100.

= Policy size: 2 or 4 propositions per edge.
— 300 policy specifications (5 x 2 x 30)

= Translation error rate: 0.0, 0.2 and 0.4.
— 27,000 policy implementations (300 x 3 x 30)

= 30 measures per implementation.
— 810,000 measures (27000 x 30)

Rego policy files between 305 and 24729 lines of code, in line with
observed policies.

6/12

Time increases with number of elements and policy size

.t
E, Iﬁ
Ol

00‘02‘04 00‘02‘04 00‘02‘04 00 02 0.4 00 02 04 00 02 04 00‘02‘04 00‘02‘04 00‘02‘04 00‘02‘04

2-policy | 4-policy | 2-policy | 4-policy | 2-policy | 4-policy | 2-policy
10-set 20-set 30-set 50-set 100-set

4-policy | 2-policy | 4-policy

= Verification times between 0 and 12 ms on average.

= Error rate has a negligible effect (correlation of 0.01).

7/12

Conclusion

= New policy verification method using metagraphs.

4Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12

Conclusion

= New policy verification method using metagraphs.

= Motivated the use of metagraphs to represent and verify
policies.

4Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12

Conclusion

= New policy verification method using metagraphs.

= Motivated the use of metagraphs to represent and verify
policies.
= Developed suite of tools*:

= RandomPolicySpecGenerator

= YawlToMetagraph / SpecToRego
= RegoToMetagraph

= SpeclmplEquivalence

4Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12

Conclusion

= New policy verification method using metagraphs.

= Motivated the use of metagraphs to represent and verify
policies.
= Developed suite of tools*:

= RandomPolicySpecGenerator

= YawlToMetagraph / SpecToRego
= RegoToMetagraph

= SpeclmplEquivalence

= Evaluated our method: verification times between 0 and 12

ms on average.

4Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12

Metagraphs for Policy Analysis

Goal: Ildentify redundancies in the policy.

tenure > 2 create_form

€1

transfer_money

e
tenure > 5 3
€2

My ({u1, ua}, {transfer_money}) = {e1, 2, €3} is not a simple
path, its a metapath.

9/12

Edge dominance

tenure > 2

create_form
tenure > 2 &

user_is_employee @

eo . review_form
€ >
““““

My ({u1}, {transfer_money}) = {e1, e, €3, €4, €5} is not

e

transfer_money
€3

.
.
.
.
.
.

edge-dominant because
is a metapath.

10/12

Input dominance

tenure > 2
eq create_form

_______ e1 | cocooo
user_is_employee es

My ({u1, u2}, { transfer_money}) = {€,, €,, e3} is not
input-dominant because

is a metapath.

11/12

Usage of dominant metapaths

= Dominant metapaths identify essential elements.

= Elements not on any dominant metapath are redundant.

= Current solution computationally expensive (A*) and partial
results.

12/12

Thank you!

[1]

(3]

[4]

(5]

Amazon. AWS Policy Generator. 2020. URL:
%5Curly,7Bhttps://awspolicygen.s3.amazonaws.com/policygen.html,7D
(visited on 11/11/2020).

Amit Basu and Robert W Blanning. Metagraphs and their applications. Vol. 15.
Springer Science & Business Media, 2007.

Padmalochan Bera, Soumya Kanti Ghosh, and Pallab Dasgupta. “Policy based
security analysis in enterprise networks: A formal approach”. In: |[EEE
Transactions on Network and Service Management 7.4 (2010), pp. 231-243.

Oliver Dohndorf et al. “Tool-supported refinement of high-level requirements
and constraints into low-level policies”. In: 2011 IEEE International Symposium
on Policies for Distributed Systems and Networks. |EEE. 2011, pp. 97-104.

Mohamed G Gouda and Alex X Liu. “Structured firewall design”. In: Computer
networks 51.4 (2007), pp. 1106-1120.

Kitti Klinbua and Wiwat Vatanawood. “Translating tosca into docker-compose
yaml file using antlr”. In: 2017 8th IEEE International Conference on Software
Engineering and Service Science (ICSESS). IEEE. 2017, pp. 145-148.

%5Curl%7Bhttps://awspolicygen.s3.amazonaws.com/policygen.html%7D

[7]

(8]

[10]

Laxman Muthiyah. Hacking Facebook Pages. 2018. URL:
https://thezerohack.com/hacking-facebook-pages (visited on
12/20/2020).

Dinesha Ranathunga, Matthew Roughan, and Hung Nguyen. “Verifiable
Policy-Defined Networking using Metagraphs”. In: |[EEE Transactions on
Dependable and Secure Computing (2020).

Dinesha Ranathunga et al. “Malachite: Firewall policy comparison”. In: 2016
IEEE Symposium on Computers and Communication (ISCC). |IEEE. 2016,
pp. 310-317.

vulners. Razer US: Database credentials lea. 2017. URL:
%5Curly,7Bhttps://vulners.com/hackerone/H1:293470%7D.

https://thezerohack.com/hacking-facebook-pages
%5Curl%7Bhttps://vulners.com/hackerone/H1:293470%7D

	Appendix

