
Building Blocks

Agent

P1R1 P2R1

worker

Agent

P1R2 P2R2

workerOrchestrator

Agent

P1R3 P3R1

worker

Service 1

Proxy

Pod 1
worker

Agent Controller

Using containers grants us portability and a standardized
environment.
This aspect, along with the fact that container
communications can be constrained and monitored gives
us a streamlined way to prevent data leaks.

Service 2

Proxy

Pod 2
Service 3

Proxy

Pod 3

Containerization and Orchestration

Service Mesh

Proxies intercept ingoing/outgoing traffic to their service
(iptables).

Controller has a Certificate Authority (CA).
Proxies generate a key pair and associate their identity to a
certificate via the CA.
Key pair is used to communicate securely between services
via mTLS.

Pod x, Replica yPxRy

Secure Data Flow

Policy Configuration
Proxy Configuration
Pod Instantiation

Container: Standard unit of software packaging application
code (service) and its dependencies in an isolated
environment.
Orchestrator: System to automate the management of
containers and their lifecycles. The orchestrator does so by
interacting with agents running on physical machines
(workers), which control groups of containers (pods).

Service Mesh: System to automate the communication, security
and monitoring of containerized services. The controller
configures the proxies (routing, security, monitoring, ...).

process

process

service

mnt
uts

pid
user

net

process

process

service

mnt
uts

ipc

mnt: Changes the
processes' view of the
filesystem
uts: Isolates hostname
pid: Isolates PIDs
user: Isolates UIDs
ipc: Isolates IPC System
V and SHM
net: Isolates networking

process

process

service

mnt
uts

pid
user

net

proxy

proxy

mnt
uts

ipc

eth0

19
2.

16
8.

0.
20

iptables routes

lo

sockets

:8080/tcp

Putting It Together

Proxy

Pod 1
Ingress

Controller

images

Proxy6

Pod 2

Proxy1

Pod 3
Egress

Policy Policy Policy

Policy Store

Proxy

Pod 1
Ingress greyscale

Proxy3

Pod 2

Proxy4

Pod 3
Egress

Policy Policy Policy

2

Owner Contractor

5

Policy Language: Rego

A Policy sidecar is used for authorization.
Policies are periodically pulled from the Policy Store.
Proxy checks Policy to authorize requests.
Ingress and Egress pods are used as gateways to
better control communications

Only allows communication from
images to greyscale and greyscale
to images using the PUT method.

Controller Proxy

Policy Store Policy

+

+

= Identity + Authentication

= Authorization

Security at rest / in transport

Leak prevention

greyscale
please?

default	allow	=	false
allow	{
		required_roles[r]
		...
}

required_roles[r]	{
		perm	:=	role_perms[r][_]
		perm.method	=	http_request.method
		perm.path	=	http_request.path
}

role_perms	=	{
		"images":	[
				{"method":	"PUT",	"path":	"/greyscale"},
		],
		"greyscale":	[
				{"method":	"PUT",	"path":	"/images"},
		]
}

Securing Workflows using the Microservices Architecture
Loïc Miller, Pascal Mérindol, Antoine Gallais, Cristel Pelsser

Context
We define a workflow as a sequence of tasks
processed by a set of actors.
The instigator of the workflow (the owner of the
data) interacts with contractors to realize a task.

Data leaks can occur in an unsecure
environment, by eavesdropping or intentional
leaks by the actors.
As data can be hosted by third parties, it needs
to be encrypted.

Contractor 1

Owner

Contractor 2

References
Barrere, M., Badonnel, R., & Festor, O. (2013). Vulnerability assessment in autonomic networks and services: a
survey. IEEE communications surveys & tutorials, 16(2), 988-1004.
Docker. (2019). Docker. [online] Available at: https://www.docker.com/ [Accessed 11 Jun. 2019].
Istio. (2019). Istio. [online] Available at: https://istio.io/ [Accessed 11 Jun. 2019].
Kubernetes. (2019). Kubernetes. [online] Available at: https://kubernetes.io/ [Accessed 11 Jun. 2019].
Lipton, P. and Moser, S. (2013). Topology and Orchestration Specification for Cloud Applications Version 1.0.
[online] docs.oasis-open.org. Available at: https://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
[Accessed 11 Jun. 2019].
Ranathunga, D., Roughan, M., Kernick, P., & Falkner, N. (2016a, July). The Mathematical Foundations for Mapping
Policies to Network Devices. In SECRYPT (pp. 197-206).
Ranathunga, D., Roughan, M., Kernick, P., Falkner, N., Nguyen, H. X., Mihailescu, M., & McClintock, M. (2016b, July).
Verifiable Policy-defined Networking for Security Management. In SECRYPT (pp. 344-351).
Schnepf, N., Badonnel, R., Lahmadi, A., & Merz, S. (2017, July). Automated verification of security chains in
software-defined networks with Synaptic. In 2017 IEEE Conference on Network Softwarization (NetSoft) (pp. 1-9).
IEEE.

Conclusion & Challenges
Using the microservices architecture can help us secure workflows by providing Identity,
Authentication, Authorization, as well as means to operate in a potentially insecure
environment.

Projects already exist to help us implement this infrastructure:

Containers (Docker (Docker, 2019), containerd, ...)
Orchestrators (Kubernetes (Kubernetes, 2019), Nomad, ...)
Service Meshes (Istio (Istio, 2019) + Envoy/NGINX/HAProxy/...)
General Purpose Policy Engines (Open Policy Agent)

In future works, we plan to investigate policy placement (Lipton and Moser, 2013; Ranathunga
et al., 2016a), policy migration (Barrere, Badonnel and Festor, 2013) and policy testing
(Ranathunga et al., 2016b; Schnepf et al., 2017) in the microservices environment.

This work has been made possible in part by a grant from the Cisco University
Research Program Fund, an advised fund of Silicon Valley Foundation.

Objectives
How can we enforce a given workflow, which guarantees data
security at rest and in transport, and prevents data leaks?

We propose and show how to use the microservices
architecture to ensure those properties.
Our goal is to make an architecture that is multi-tenant and
follows a generic design.
We also want the architecture to be easily configurable,
deployable and testable, by using pre-existing blocks.

Service Mesh
Orchestration

Containerization

+ Encryption


