
Mining in Logarithmic Space with Variable Difficulty
Loïc Miller

loic.miller@imt-atlantique.fr

IMT Atlantique / IRISA

Rennes, France

Dorian Pacaud

dorian.pacaud@imt-atlantique.fr

IMT Atlantique / IRISA

Rennes, France

Nathanaël Derousseaux–Lebert

IMT Atlantique / IRISA

Rennes, France

Emmanuelle Anceaume

emmanuelle.anceaume@irisa.fr

CNRS / IRISA

Rennes, France

Romaric Ludinard

romaric.ludinard@imt-atlantique.fr

IMT Atlantique / IRISA

Rennes, France

Abstract
This paper presents the first non-interactive, succinct, and secure

representation of a PoW-based blockchain that operates under vari-

able mining difficulty while satisfying both completeness and on-

lineness properties. Completeness ensures that provers can up-

date an existing NIPoPoW by incorporating a newly mined block,

whereas onlineness ensures that miners can extend the chain di-

rectly from a NIPoPoW. The time complexity for both the prover (to

update a NIPoPoWwith a new block) and the verifier is logarithmic

in the number of blocks of the underlying PoW blockchain. The

communication complexity required for synchronization is polylog-

arithmic in the length of the blockchain. We prove the correctness

of our scheme in the presence of a 1/3-bounded PPT adversary.

CCS Concepts
• Security and privacy→Distributed systems security; •Com-
puting methodologies→ Concurrent algorithms; • Theory
of computation→ Distributed algorithms.

ACM Reference Format:
Loïc Miller, Dorian Pacaud, Nathanaël Derousseaux–Lebert, Emmanuelle

Anceaume, and Romaric Ludinard. 2025. Mining in Logarithmic Space with

Variable Difficulty. In Proceedings of the 2025 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’25), October 13–17, 2025, Taipei,
Taiwan.ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3719027.

3744874

1 Introduction
The immutability of a Proof-of-Work (PoW)-based blockchain is the

feature that brings an unprecedented level of trust to transactions

that have been sequentially stored in each block of the blockchain,

for over 16 years in the case of Bitcoin. Concretely, in the absence of

trusted third parties, each node interested in any single transaction

𝑡 must verify the validity of both application and consensus data

belonging to every block preceding the block containing 𝑡 . Appli-

cation data includes transactions, account data, and smart contract

status. Consensus data includes all the information needed for the

correct construction of the block sequence. At the time of writing,

This work is licensed under a Creative Commons Attribution 4.0 International License.

CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3744874

verifying all the blocks of the Bitcoin blockchain requires download-

ing 890,500 blocks for a total of 640GB. This is difficult to reconcile

with mobile devices or for nodes that run different blockchain

clients. Different techniques have been proposed and are currently

deployed to securely optimize application data. These encompass

SNAP [29], Layer 2 constructions [16, 20], side chains [3, 13, 27], or

compression of multiple transactions into smaller ones [9]. These

techniques are by construction not applicable to consensus data,

essentially because consensus data guarantees the construction

of a unique and immutable sequence of blocks. Consensus data

is sealed in the header of each block and includes, in particular,

the fingerprint of the previous block in the blockchain, block PoW

nonce, and block mining difficulty.

Light clients are protocols that enable faster synchronization of

consensus data. The Simplified Payment Verification (SPV) protocol,

presented as part of the Bitcoin protocol [26], downloads only the

header of each block instead of each full block. This reduces the

verification overhead from a few megabytes per block to just 80 B

per block. However, the overhead remains substantial as it grows

linearly with the number of blocks. The crucial problem to be solved

for the full adoption of blockchains is therefore the following:

Can we build and non-interactively verify in a
sublinear number of operations and in the ab-
sence of full nodes a succinct representation of
a PoW-based blockchain operating in a permis-
sionless system1?

Sublinear light clients have been proposed to address this prob-

lem. In particular, FlyClient [7] allows any user to store only a

compact proof of the underlying blockchain. However, (i) veri-
fication requires a logarithmic number of interactions with full

nodes, and (ii) the full blockchain is still needed to update the proof.

The Non-Interactive Proof of Proof-of-Work (NIPoPoW) proposed

by Kiayias et al. [19] is a succinct representation of a PoW-based

blockchain (i.e., it contains a logarithmic number of blocks). New

blocks can be mined directly on top of a NIPoPoW, which does

not necessitate the maintenance of full nodes. Any user (miner or

client) can be convinced that it is a secure representation of an

honest underlying blockchain in a single interaction. The essence

of their construction relies on an elegant idea – they take advantage

of the probabilistic distribution of block fingerprints to subsample

certain blocks called superblocks. A block is an ℓ-superblock if

1
A system in which nodes can join and leave without the approval or trust of others is

said to be permissionless. Bitcoin is a permissionless blockchain where nodes (miners

or clients) are free to participate in its construction.

https://orcid.org/0000-0003-4717-641X
https://orcid.org/0000-0003-4158-149X
https://orcid.org/0000-0002-4997-4813
https://doi.org/10.1145/3719027.3744874
https://doi.org/10.1145/3719027.3744874
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3744874

CCS ’25, October 13–17, 2025, Taipei, Taiwan Loïc Miller, Dorian Pacaud, Nathanaël Derousseaux–Lebert, Emmanuelle Anceaume, & Romaric Ludinard

0 (
20

09
-01

)

20
00

00
 (2

01
2-0

9)

40
00

00
 (2

01
6-0

2)

60
00

00
 (2

01
9-1

0)

80
00

00
 (2

02
3-0

7)

Block height (date)

101

103

105

107

109

1011

1013

Di
ffi

cu
lty

56
44

9 (
20

10
-05

)

Figure 1: Bitcoin difficulty variation over time (865,042 blocks as of
October 11, 2024). Vertical dashed lines indicate a decrease in the
mining difficulty compared to the previous epoch.

its fingerprint meets the PoW condition with a 1/2ℓ margin, i.e.,

𝐻 (block) ≤ 𝑇 /2ℓ for some target 𝑇 . Higher-level superblocks are

exponentially rarer – every block is a 0-superblock, half on average

are 1-superblocks, a quarter are 2-superblocks, and so on. Kiayias et
al.’s solution [19] consists in subsampling the last 2𝐾 ℓ-superblocks,

for ℓ = 0, . . . , ⌊log
2
(𝑛)⌋ − 1 with 𝐾 a security parameter and 𝑛 the

number of blocks of a PoW-based blockchain. They show that the

headers of this logarithmic number of superblocks plus a constant

number of full blocks is sufficient to convince a verifier that they

are representative of the hashing power devoted to the construction

of the entire PoW-based blockchain. However, the construction and

verification algorithms of Kiayias et al.’s NIPoPoW are correct only

if the mining difficulty of each block is constant, i.e., only if the

computational power devoted to the creation of each single block is

constant since the inception of the blockchain. This is an unrealistic

assumption, as illustrated in Figure 1, which shows the evolution

of block mining difficulty since Bitcoin’s creation. The difficulty

continuously increases except for the occasional slight reductions.

1.1 Current Challenges
Envisioning NIPoPoWs compliant with variable mining difficulty

raises numerous challenges.

[C1]We need to quantify the extent to which a block deserves

to be sampled to be representative of the honest blockchain. In a

variable difficulty setting, leveraging only block fingerprints is not

enough. Indeed, two blocks showing very close fingerprints might

have been mined with different difficulties and thus do not exhibit

the same rarity. In contrast, two blocks with fingerprints far from

each other may equally outperform their respective targets and

thus may both deserve to be sampled.

[C2] Secondly, variable difficulty in any PoW-based blockchain

requires verifying the legitimacy of each block’s difficulty. In Bit-

coin, miners recompute the target every 2016 blocks (an epoch)

to maintain a stable block production rate. However, when only a

sublinear number of blocks is sampled, this verification becomes im-

possible, giving rise to adversarial manipulation of difficulty known

as low-difficulty attacks.

Definition 1 (Low-difficulty attack). A low-difficulty at-
tack involves an adversary privately mining a chain whose older
blocks have strictly lower difficulties than older honest blocks and
whose recent blocks have mining difficulties comparable to those of
recent honest blocks.

By mining old blocks with low difficulty, the adversary will be

able to mine old blocks very quickly, matching the number of blocks

mined by honest parties, although the adversarial computing power

is 1/3 less than the total hashing power. Since block sampling re-

tains very few old blocks, a verifier will not be able to detect the

adversary’s use of illegitimately low difficulty. In contrast, block

sampling retains all very recent blocks, allowing a verifier to check

the accuracy of the difficulty of the adversary’s recent blocks. An ad-

versarial prover will therefore present the verifier with a NIPoPoW

that seems to be indistinguishable from a NIPoPoW that represents

the honest blockchain. This attack is very subtle but needs to be

detected by verifiers to make NIPoPoWs an interesting alternative

to full blockchains. Note that a less subtle low-difficulty attack is a

brute-force one – the entirety of an adversarial blockchain is mined

with illegitimately low mining difficulties, giving rise to a longer

blockchain than the honest one. Recall that existing NIPoPoW con-

structions do not need to defend against low-difficulty attacks since

they suppose that all the blocks have been created with the same

legitimate difficulty [15, 19, 21].

[C3] Finally, we need to tightly dimension the security sam-

pling parameter 𝐾 so that if an adversarial prover builds or up-

dates a NIPoPoW with illegitimate block mining difficulties, with

overwhelming probability, a verifier will reject the non-legitimate

NIPoPoW. This is crucial to defend against low-difficulty attacks.

1.2 Our Contributions
We respond to the above challenges by offering, for the first time, a

non-interactive, succinct, and secure representation of a PoW-based

blockchain that operates under variable mining difficulty while sat-

isfying both completeness and onlineness properties. Completeness

states that provers can produce a NIPoPoW by updating the cur-

rent one with a new block, while onlineness says that miners can

mine new blocks directly from a NIPoPoW. The time complexity

for both the prover (to update a NIPoPoW with a new block) and

the verifier is logarithmic in the number of blocks of the underly-

ing PoW blockchain. The communication complexity required for

synchronization is polylogarithmic in the number of blocks of the

blockchain. The main ideas of our solution are as follows.

First, we subsample blocks so that sampled blocks at level ℓ =

0, . . . , ⌊log
2
(|C|)⌋ are equally representative of a blockchain C de-

spite a variable difficulty setting. This is achieved by defining the

level of a block as the ratio between its fingerprint and its mining

target, projected onto the unit interval [0, 1]. A given level may

therefore contain blocks whose mining difficulties are different,

even more so for high levels. This reflects the fact that those blocks

are equally representative of the blockchain they are sampled from

but have been created in epochs that involved different compu-

tational powers. This responds to Challenge C1. Observe that as
the blockchain increases, the set of sampled blocks evolves – some

previously sampled blocks may subsequently be discarded. How-

ever, due to our definition of block level, any discarded block is

Mining in Logarithmic Space with Variable Difficulty CCS ’25, October 13–17, 2025, Taipei, Taiwan

guaranteed to be irrelevant for future updates, regardless of its

difficulty.

Second, let 𝑏 be the last common block shared by an honest

blockchain C and an adversarial one C′. We show that for any

block level ℓ , if the quantity of difficulty accumulated in the ℓ-blocks

of C′ from block 𝑏 reaches a certain quantity 𝐷A
min
(ℓ), then with

overwhelming probability the quantity of difficulty accumulated in

the ℓ-blocks of C from block 𝑏 is strictly greater than the quantity

accumulated in the ℓ-blocks of C′ from the same block 𝑏.

Third, we quantify the number of ℓ-blocks that are sufficient to

accumulate 𝐷A
min
(ℓ = 0) difficulty. This is achieved by combining

the gambler’s ruin problem with the Poisson distribution. Briefly,

we model the mining process as a two-phase competition between

two teams, the adversarial team and the honest nodes team. Both

teams start at their last common block 𝑏. We study two scenarios.

In the first phase of the competition, both teams create their own

blocks until the honest team has created 𝐾H blocks (first scenario)

or the adversary has created 𝐾A blocks (second scenario). In the

second phase of both scenarios, both teams continue to create their

own blocks until either the adversarial team catches up and exceeds

the accumulated quantity of difficulty of the honest team, in which

case it wins the competition, or the adversarial team is so far behind

it is hopeless for it to ever catch up to the quantity of difficulty of

the honest blockchain. We set 𝐾 =max (𝐾H, 𝐾A) so that the latter

case holds with overwhelming probability. The question is whether

𝐾 blocks are sufficient to accumulate difficulty 𝐷A
min
(ℓ), at any level

ℓ > 0. A corollary of the ℓ-common prefix theorem (Theorem 6.3)

shows that 𝐷A
min
(ℓ) is exponentially decreasing with level ℓ , which

positively answers the question and thus responds to Challenge C3.
We have compared, for each level ℓ ≥ 0, the accumulated difficulty

of the last 𝐾 blocks of the Bitcoin blockchain up to October 11,

2024, with the theoretical bound 𝐷A
min
(ℓ) calculated in Lemma 6.3).

This comparison clearly illustrates that 𝐾 blocks are sufficient to

accumulate 𝐷A
min
(ℓ) quantity of difficulty for each level ℓ ≥ 0.

Finally, to respond to Challenge C2, we combine the exponential

decay property of 𝐷A
min
(ℓ) together with the security parameter

𝐾 and the notion of the latest common ancestor (LCA) block to

prove that verifiers detect low-difficulty attacks. The notion of

LCA is fundamental, as it provides important blockchain structural

information when comparing their NIPoPoWs. More precisely, if

two NIPoPoWs share an LCA block 𝑏 at level 𝜇, it means that (i)
both NIPoPoWs have the same level (see Definition 4), i.e., their

underlying blockchains have approximately the same number of

blocks; (ii) both underlying blockchains share a common prefix

and block 𝑏 is their last common 𝜇-block, and (iii) from block 𝑏

onward, at least one of both underlying blockchains has no less than

𝐾 𝜇-blocks. Hence, if the adversarial prover presents a NIPoPoW

Π′ (representative of a blockchain created during a low-difficulty

attack), and that Π′ shares an LCA block with an honest NIPoPoW

Π, then whatever the level 𝜇 of the LCA block, Π′ will not be able
to accumulate more difficulty in the 𝐾 sampled 𝜇-blocks than the

honest ones of Π. Therefore, the adversarial prover will not be

able to convince a verifier that Π′ is representative of the honest
blockchain. Now, if Π and Π′ do not share an LCA block (one is the

result of a low-level brute force attack as argued in Section 5.3.3),

a verifier will exploit the initial Sync handshake of the Bitcoin

protocol to reject the adversarial NIPoPoW. Briefly, when a verifier

𝑣 wishes to synchronize with the network, prior to executing the

verifier algorithm, 𝑣 annotates a Sync request with a privately

generated random number 𝜈 and broadcasts the Sync request to the
system. Upon receipt of annotated Sync requests, any correct miner

𝑢 accumulates in a set, say𝑉 , all the random numbers 𝜈𝑖 , . . . , 𝜈 𝑗 that

𝑢 has received but which 𝑢 has not inserted yet into the coinbase of

the blocks 𝑢 has created so far. Adversarial miners are free to not

insert 𝑉 in their block coinbase, but verifier 𝑢 will only compare

NIPoPoWs Π and Π′ that do contain blocks 𝑏 and 𝑏′ annotated with
𝜈 . Verifier 𝑢 will observe the network until it receives the first 𝐾

subsequent blocks of 𝑏 or 𝑏′. Once received, 𝑢 will be able to safely

accept the honest NIPoPoW.

To summarize, we present a Non-Interactive Proof of Proof-of-

Work (NIPoPoW) that

• operates in a variable mining difficulty setting;

• is succinct: A NIPoPoW is made of a logarithmic number

of block headers in the number of blocks of the underlying

blockchain. Experiments on Bitcoin blockchain C show that

2𝐾 log(|C|) ≤ NIPoPoW(C) ≤ 3𝐾 log(|C|), where 𝐾 is the

provably secure sampling parameter of the construction;

• requires a logarithmic number (in the number of blocks of

the underlying blockchain) of operations to be updated and

verified;

• requires a polylogarithmic number of information and an

update time polylogarithmic in the number of blocks of the

underlying blockchain for a verifier to synchronize;

• provably achieves security against a Byzantine adversary

owning at any time strictly less than 1/3 of the system hash-

ing power.

In the remainder of the paper, Section 2 details the related work

with a particular emphasis on Kiayias et al.’s NIPoPoW scheme.

Section 3 presents the model of the system, and Section 4 formally

specifies a Non-Interactive Proof of Proof-of-Work in a variable

mining setting. Section 5 presents the prover and verifier algorithms.

Section 6 shows the correctness of our solution. Section 7 concludes.

2 Related Work
2.1 Light clients
The problem of blockchain becoming of considerable size was ini-

tially predicted by Satoshi Nakamoto in the seminal paper that

introduced Bitcoin [26]. He offered a simple solution, Simplified
Payment Verification (SPV), that requires a client to only store block

headers and leave out transactions. Still, the amount of data that

needs to be downloaded from the network grows linearly with the

size of the blockchain. FlyClient [7] allows a succinct and secure

construction of proofs in a variable difficulty setting. They make

use of Merkle mountain ranges to reference the whole previous

blockchain from every block. However, if a full node has a proof and

mines a new block on top of it, it cannot create a new optimal proof

without holding the whole chain. CoinPrune [24] still requires stor-

ing the entire chain of block headers prior to the pruning point.

Another approach to building succinct proofs is to rely on SNARKs

CCS ’25, October 13–17, 2025, Taipei, Taiwan Loïc Miller, Dorian Pacaud, Nathanaël Derousseaux–Lebert, Emmanuelle Anceaume, & Romaric Ludinard

Table 1: Compression schemes. |C| is the number of blocks in C; 𝑐 is the block header size; 𝑡𝑥 is the block transaction size; 𝑘 is
the common prefix parameter; 𝑎 is the snapshot size and 𝜒 is the number of blocks of the uncompressed subchain.

Storage Communication Online Variable Adv.
Difficulty

BTC SPV |C|𝑐 + log(𝑡𝑥) |C|𝑐 + log(𝑡𝑥) ✓ 1/2
Kiayias [21] |C|𝑐 + 𝑘𝑡𝑥 + 𝑎 poly log(|C|)𝑐 + 𝑘𝑡𝑥 + 𝑎 1/3
FlyClient [7] |C|𝑐 + 𝑘𝑡𝑥 + 𝑎 poly log(|C|)𝑐 + 𝑘𝑡𝑥 + 𝑎 ✓ 1/2
Kiayias [19] poly log(|C|)𝑐 + 𝑘𝑡𝑥 + 𝑎 poly log(|C|)𝑐 + 𝑘𝑡𝑥 + 𝑎 ✓ 1/3
Jain [15] poly log(|C|)𝑐 + 𝑘𝑡𝑥 + 𝑎 poly log(|C|)𝑐 + 𝑘𝑡𝑥 + 𝑎 ✓ 1/2
This work poly log(|C|)𝑐 + (𝜒 + 𝑘)𝑡𝑥 + 𝑎 poly log(|C|)𝑐 + (𝜒 + 𝑘)𝑡𝑥 + 𝑎 ✓ ✓ 1/3

(Succinct Non-Interactive Argument of Knowledge). Mina [6], for-

merly known as Coda [5]
2
, is such a construction. Mina compresses

a chain to polylogarithmic size and updates the proof with new

blocks. However, utilizing SNARKs requires a trusted setup for the

common reference string.

2.2 Non-Interactive Proofs of Proof-of-Work
A Non-Interactive Proof of Proof-of-Work (NIPoPoW) primitive

aims at constructing a proof that is representative of the size of

the original blockchain. Such a primitive has been proposed and

instantiated by Kiayias et al. [19], and elegantly relies on the idea

that sampling a small set of well-chosen blocks is sufficient to

estimate the size of the original blockchain [17, 19, 21]. To be kept

as a sample, a block needs to satisfy a specific property on its

cryptographic hash. The distribution of hash values is stochastic,

and thus some blocks end up with hash values significantly below

the mining target 𝑇 . Blocks that hash to a value less than 𝑇 /(2ℓ)
are called ℓ-superblocks [21], where 𝑇 is the mining target and

ℓ ≥ 0 is called the level of the block. The notion of ℓ-superblock

reflects block rarity. In expectation, for a blockchain C of 𝑛 blocks,

only one block of C is a (⌊log(𝑛)⌋)-superblock, two blocks of C
are (⌊log(𝑛)⌋ − 1)-superblocks, . . ., and all the blocks of C are

0-superblocks. A NIPoPoW requires every block header to store

pointers to the last ℓ-superblock that precedes it at every level

ℓ ≥ 0 in order to ensure that the subsampled blocks also form a

valid chain, i.e., a totally ordered sequence of valid blocks. The

construction proposed by Kiayias et al. [19] consists in keeping the

2𝐾 most recent blocks of each level, where𝐾 is a security parameter

whose value, by rule of thumb, is set proportionally to the common

prefix parameter 𝑘3. Note that Kiayias et al. [19] use 𝑚 in place

of 𝐾 , but this can cause confusion with the length of an epoch𝑚

used to recalculate block mining difficulties. Their proof is resilient

to a 1/3-adversary. The authors in [15] extend Kiayias et al. [19]’s
scheme to obtain a proof that is correct in the presence of a 1/2-
bounded PPT adversary. Their main idea is to attach increasing

weights𝑊𝛽 (ℓ) to ℓ-superblocks, making them “diamond-blocks” so

that the selected proof is the heaviest. Because the adversary has

minority mining power, they cannot create a heavier sequence of

diamond blocks faster than the honest parties, for the same reason

2
https://minaprotocol.com/blog/coda-protocol-relaunches-as-mina-the-worlds-

lightest-blockchain.

3
For any two blockchains C1 and C2 , with | C1 | ≤ | C2 | , we say that 𝑘 is the common

prefix of both blockchains if C1 , from which the 𝑘 most recent blocks have been

removed, is a prefix of C2 .

that an adversary cannot create a longer regular blockchain faster

than the honest parties create one.

However, Jain et al. [15] prove the correctness of their construc-

tion in a static setting, that is, assuming that the mining difficulty

is constant. Our preliminary results on NIPoPoWs in a variable

difficulty setting appear in [23]. In this previous work, parameter

𝐾 evolves as a function of the variation of block mining difficulties.

Specifically, when a sampled ℓ-block 𝑏 shows a decreasing mining

difficulty with respect to the oldest ℓ-block 𝑏′ of the proof, block
𝑏′ is not pruned from the proof. Instead, it remains in the proof as

long as the accumulated difficulty of new sampled ℓ-blocks is less

than the one obtained before updating the proof with 𝑏. Beyond its

complexity, the latency of the update depends on the variation of

mining difficulties, which is undesirable and an opportunity for the

adversarial prover to devise strategic attacks.

Table 1 summarizes the storage and communication complexity

of these constructions, indicates whether or not the construction is

sufficient to create new blocks and to synchronize any newcomer,

whether it fits a dynamic environment, and finally whether it is

robust against a 1/2 or a 1/3-bounded PPT adversary. This work

improves upon existing solutions by providing a scheme that is

both online, i.e., one can mine blocks directly from the proof, and

works in a variable difficulty setting against a 1/3-bounded PPT

adversary. The storage and communication costs of our scheme are

comparable to Kiayias et al. [19] and Jain et al. [15]. We add one

constant, keeping our scheme with polylogarithmic complexity.

3 Model of the system
We consider Proof-of-Work blockchains, that is, blockchains whose

block construction requires solving a resource-consuming calcula-

tion [2]. We specifically focus on consensus data, and we assume

that each block contains a snapshot of the application state. In Bit-

coin, for instance, a snapshot of the application data is composed

of the current set of UTXOs. Thus the state committed by a block

is represented by the snapshot of this block.

Proofs of correctness of our construction rely on the model

adopted by Garay et al. [11]. Specifically, we consider a synchro-
nous setting where time is quantized into discrete rounds 𝑟 during

which each party can send a message to other parties, receive the

messages sent to it during the round, and execute computational

steps based on the received messages. We assume the presence of

an adversary that models the behaviors of adversarial parties. The

series 𝑛 = {𝑛𝑟 }𝑟 ∈N represents the total number of participants in

https://minaprotocol.com/blog/coda-protocol-relaunches-as-mina-the-worlds-lightest-blockchain
https://minaprotocol.com/blog/coda-protocol-relaunches-as-mina-the-worlds-lightest-blockchain

Mining in Logarithmic Space with Variable Difficulty CCS ’25, October 13–17, 2025, Taipei, Taiwan

the system over time, 𝑡 = {𝑡𝑟 }𝑟 ∈N of which are adversarial. The

relative proportion of adversarial parties is bounded by a variable

𝛿 , typically called the advantage of honest parties, and we have

∀𝑟 : 𝑡𝑟 ≤ (1 − 𝛿) (𝑛𝑟 − 𝑡𝑟). Each party is allowed to make 𝜌 queries

to the cryptographic hash function in every round to create a block

(specifically to find an adequate nonce). We say that a block 𝑏 is

valid if its header contains a nonce, alongwith non-double-spending

transactions, that hashes to a value ℎ below a given mining target.

The cryptographic hash function h(.) behaves as an ideal random

function and is modeled as a random oracle [4]. It produces a con-

stant length 𝜅 output, where 𝜅 is a security parameter typically

equal to 256. The adversary can query the cryptographic hash func-

tion up to 𝑡𝑟 ×𝜌 times per round, where 𝑡𝑟 represents the number of

adversarial parties at round 𝑟 [12]. We denote by 𝑓 the probability

that at least one honest query is successful during one round, i.e.,

the probability that at least one honest party successfully mines a

block during one round. Table 2 lists all the variables used.

We suppose that the adversary is a rushing adversary in the

sense that they can observe what the honest parties have done

during the round before using their computational power at the

end of the round. The adversary is also a Sybil adversary as they can

inject as many additional messages as they wish by faking multiple

identities. We limit the adversary to a probabilistic polynomial-time

Turing machine that behaves arbitrarily. The adversary may thus

not follow the prescribed algorithms, but it remains computationally

bounded. Hence, it cannot, in a polynomial number of steps of time

or space, forge honest party signatures or break the hash function

and signature scheme with all but negligible probability. Therefore,

we name our adversary the 1/3-bounded PPT adversary. Any party

following the prescribed protocol is called an honest party.

4 Non-Interactive Proof of Proof-of-Work in a
variable difficulty setting

A Non-Interactive Proof of Proof-of-Work system in a variable dif-

ficulty setting consists of two algorithms: a prover algorithm and a

verifier algorithm. The prover algorithm, called Compress(), takes
as input a chain of blocks with variable mining difficulties and

returns a NIPoPoW Π. The node that executes the prover algorithm
is called the prover. In contrast to an honest prover, an adversar-

ial prover accepts to compress chains whose certain blocks were

created with illegitimate mining difficulties. The verifier algorithm,

called Compare(), takes as input two NIPoPoWs (or, more generally,

two chains of blocks) and returns the accepted NIPoPoW. A verifier

is typically a newcomer (miner or simple user) but more generally

any party that may have lost connection for some time.

Definition 2 ((Compress, Compare)). We call (Compress(),
Compare()) a Non-Interactive Proof of Proof-of-Work system if, for
all 1/3-bounded PPT adversaries, it has the security, succinctness,
completeness, and onlineness properties described below.

Security: For any two proofs Π and Π′ such that at least one of them
is presented by an honest prover, Compare(Π,Π′) returns the
proof that is representative of the blockchain that has accumu-
lated the largest quantity of difficulty;

Succinctness: For any blockchain C maintained by an honest party,
|Compress(C)| = O(poly log |C|);

Completeness: For any blockchain C maintained by an honest
party and any block 𝑏 valid for C, let Π = Compress (C).
Then Compress(C 𝑏) = Compress(Π 𝑏);

Onlineness: For any blockchain C maintained by an honest party,
the state committed by Compress(Π) is equal to the one com-
mitted by C,

where |C| represents the number of block headers of C, and C 𝑏 (resp.
Π 𝑏) indicates that block 𝑏 is appended to C (resp. proof Π).

Security states that if two honest provers present their proofs,

the verifier will be convinced by the one that has accumulated the

largest quantity of difficulty (this is generally called “perfect com-

pleteness”). Furthermore, it states that if among both provers one

is adversarial, then it will not be able to convince the verifier (this

is generally called “perfect soundness”) unless it behaves honestly.

Completeness states that a prover can produce a proof Π by updat-

ing the current one with a new block, while onlineness says that

miners can mine new blocks directly from a proof. Onlineness is

crucial for scalability, as the underlying blockchain does not need

to be maintained; the proof is self-contained.

5 The Prover and Verifier Algorithms
5.1 Variable mining difficulty
Let C be some PoW-based blockchain. To guarantee that on average

the time interval between any two successive block creations is

constant, despite unpredictable variations of the global hashing

power, miners in PoW-based blockchains periodically recalculate

the block mining difficulty. The period of time between any two

successive recalculations is called an epoch. In Bitcoin, an epoch

is made of𝑚 = 2016 blocks, i.e., two weeks. The mining difficulty

at epoch 𝑖 represents how much more difficult it is to mine a block

at epoch 𝑖 than it was when the genesis block of the blockchain

was created. The mining difficulty is inversely proportional to the

mining target [26]. This last notion refers to the PoW inequation

satisfied by any block 𝑏 of a PoW-based blockchain, i.e., h(𝑏) ≤ 𝑇𝑖 ,
where 𝑇𝑖 represents the mining target at epoch 𝑖 . In the following,

we will denote by ∥𝑏∥ the mining difficulty of block 𝑏, and by

extension by ∥C∥ the mining difficulty of blockchain C. This is
equal to the sum of the difficulties of all the blocks that comprise

C. If ∥𝑏∥ = 1/𝑇𝑖 , block 𝑏 is valid for epoch 𝑖 .

5.2 Evaluating the significance of a block
We revisit the definition of block level, introduced in Kiayias et.
al [19] to take into account variable mining difficulties. The level of

a block is an indicator of the blockchain’s size: the higher the level,

the more representative the block is of the total number of blocks in

the chain. The level of a block is a projection of its fingerprint over

its mining target onto the unit interval [0, 1]. A given level may

contain blocks whose mining targets are different, and even more

so for high levels. This reflects the fact that those blocks are equally

representative of the original blockchain but have been created in

epochs that involved different computational powers.

Definition 3 (Level of a block). Let C be a blockchain, and let
block 𝑏 ∈ C be mined during epoch 𝑖 ≥ 0. We say that the level of

CCS ’25, October 13–17, 2025, Taipei, Taiwan Loïc Miller, Dorian Pacaud, Nathanaël Derousseaux–Lebert, Emmanuelle Anceaume, & Romaric Ludinard

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Block level

100

101

102

103

104

105

106

Nu
m

be
r o

f b
lo

ck
s

Number of blocks per level

Figure 2: Number of blocks in the Bitcoin blockchain as of October
11, 2024, as a function of their level (see Definition 3).

block 𝑏 is equal to ℓ if it verifies the following condition:

h(𝑏)
𝑇𝑖
≤ 1

2
ℓ
.

A block of level ℓ is called an ℓ-block. By construction, a block of

level ℓ is also a block of level ℓ ′, for all 0 ≤ ℓ ′ < ℓ . By convention, the

genesis block has an infinite level. On average, one needs to create

2
ℓ
blocks to obtain one block of level ℓ . There is therefore on average

one block of level ⌊log
2
(|𝐶 |)⌋, two blocks of level ⌊log

2
(|𝐶 |)⌋ − 1,

. . . , |𝐶 | blocks of level 0. By sampling only a few blocks at each

level, one will be able to exponentially compress the blockchain.

Figure 2 has been plotted from the Bitcoin blockchain on October

11, 2024, and depicts the number of blocks that match a given block

level ℓ with a logarithmic scale on the vertical axis. As expected,

decay is exponential.

5.3 Construction of a NIPoPoW
ANIPoPoW consists of two algorithms. The prover algorithm, called

Compress(), aims to build a NIPoPoW from a complete blockchain

or to update a NIPoPoW when a new valid block is received. The

verifier algorithm, called Compare(), aims to compare NIPoPoWs in

order to select from them the one that has accumulated the largest

quantity of difficulty. Our algorithms are relatively close to the

ones proposed in [19]. This is very valuable because it keeps the

elegance of the original construction, and it makes ours compliant

with both static and variable difficulties.

5.3.1 Notations used in the algorithms. We often use C to denote a

blockchain, with C[𝑖] representing its 𝑖𝑡ℎ block. C[: 𝑗] represents
the sequence of blocks of C from the genesis block to its 𝑗𝑡ℎ block

exclusive, and C[𝑖 :] denotes the sequence of blocks from the 𝑖𝑡ℎ

one inclusive to the last blocks of C. C[𝑖 : 𝑗] denotes the sequence
of blocks from the 𝑖𝑡ℎ one inclusive to the 𝑗𝑡ℎ block exclusive. The

block indices 𝑖 and 𝑗 can be replaced by blocks 𝐴 and 𝑍 . We then

write C{𝐴 : 𝑍 } to designate the chain from block 𝐴 inclusive to 𝑍

exclusive. Again, any end can be omitted. A negative index means

to take blocks from the end, C[−1] denotes the tip of C. We write

C ↑ℓ to mean the subsequence of C containing only its ℓ-blocks.

The C ↑ operator is absolute: (C ↑ℓ) ↑ℓ+𝑖= C ↑ℓ+𝑖 . Since every block
header keeps pointers to the last preceding block of every level

(see Section 5.3.2), C ↑ℓ forms a chain of blocks. C1 ∩ C2 denotes
the chain consisting of blocks only in both chains. We note C1 \ C2
the chain consisting of blocks in C1 but not C2. The chain filtering

operators [·], {·}, ↑ have precedence over the ∪, ∩ and \ operators.

5.3.2 The prover algorithm. The Compress () algorithm, whose

pseudo-code is given in Algorithm 1, aims to sample a polylog-

arithmic number (in the size of the underlying blockchain C) of
well-chosen blocks from C or from any chain of blocks anchored

at the genesis block. The latter case enables the Compress () algo-
rithm to be used to update a NIPoPoWwith a new valid block. Only

sampled blocks will appear in the NIPoPoW; all other blocks will

be pruned. The sample still forms a chain of blocks by having, for

each block header, the fingerprint of the last preceding block at

every level ℓ = 0, . . . , ⌊log
2
(|𝐶 |)⌋.

Execution of the Compress𝐾,𝜒,𝑘 (C) algorithm builds three sub-

chains, the unstable, uncompressed, and compressible subchains from
blockchain C. The unstable subchain Ω is made of the 𝑘 most recent

full blocks of the blockchain, i.e., Ω = C[−𝑘 :]. The term unstable

refers to the fact that the 𝑘 most recent blocks have a non-negligible

probability of being pruned during a fork resolution. The analytical

dimensioning of the common prefix parameter 𝑘 by Garay et al. [11]
in a variable setting shows that 𝑘 is proportional to the ratio𝑚/𝜏 ,
where𝑚 is the length of an epoch and 𝜏 is the dampening factor in

Bitcoin’s mining target recalculation [26] (see Section 5.1). A conser-

vative evaluation gives 𝑘 = 323 [11]
4
. The uncompressed subchain𝑋

is made of the 𝜒 most recent full blocks of C after having removed

the unstable subchain, i.e., 𝑋 = C[−𝜒 − 𝑘 : − 𝑘]. Parameter 𝜒 is

set to 2𝑚 to guarantee that the uncompressed subchain contains at

least the𝑚 blocks created during the second most recent blockchain

epoch so that the difficulties of the uncompressed subchain blocks

can be checked. Remark that by construction, Ω[0], i.e., the first
block of Ω, points to 𝑋 [−1], i.e., the last block of 𝑋 . Note that, in

contrast to our construction, there is no need for an uncompressed

part when dealing with static difficulties (e.g., [15, 19]). Finally, the

compressible subchain C★ is made of all the headers of the blocks of

C after having removed the unstable and uncompressed subchains,

i.e., C★ = C[: − 𝜒 − 𝑘]. For each ℓ = 0, . . . , ⌊log
2
(|C★ |)⌋, the last

2𝐾 ℓ-blocks of subchain C★ are sampled. The highest level that

contains 2𝐾 ℓ-blocks is called the level of the NIPoPoW.

Definition 4 (level of a NIPoPoW). Let C★ be the compress-
ible subchain of a PoW-based blockchain C. The level of the NIPoPoW
of the underlying blockchain C is given by

Level(NIPoPoW)
△
=max

{
ℓ ∈ N

�� |C★ ↑ℓ | ≥ 2𝐾
}
.

The secure dimensioning of parameter 𝐾 appears in Section 6.4.

Note that there are some ℓ ′-blocks whose cardinal number is less

than 2𝐾 . Then all these ℓ ′-blocks are also sampled and appear

at level ℓ = Level(NIPoPoW). The genesis block, among others,

appears at level ℓ . This guarantees that updating a proof with new

blocks progressively leads to a proof of a higher level. Then for each

lower level 𝜇 = ℓ−1, . . . , 0, the 2𝐾 most recent 𝜇-blocks are sampled

(i.e., the 2𝐾 blocks of C★ ↑𝜇 [−2𝐾 :]) as well as the 𝜇-blocks coming

after the 𝐾-th block of level 𝜇 + 1 (i.e., the 𝐾 blocks C★ ↑𝜇 {𝑏★ : },
4
It is interesting to see the difference between the conservative analysis of Garay et
al. [11] which gives 𝑘 = 323 and the value 𝑘 = 6 commonly mentioned in informal

discussions.

Mining in Logarithmic Space with Variable Difficulty CCS ’25, October 13–17, 2025, Taipei, Taiwan

Input : C, which is either a regular or a compressed chain of

blocks

Output : tuple (D, 𝑋,Ω, ℓ) where
Ω is the unstable subchain of C of size 𝑘 ,

𝑋 is the uncompressed subchain of C of size 𝜒 ,

D is the compressed chain,

and ℓ is the highest level of C
1 function Compress𝐾,𝜒,𝑘 (C):
2 D ← ∅
3 Ω ← C[−𝑘 :] // Unstable subchain

4 𝑋 ← C[−𝜒 − 𝑘 : −𝑘] // Uncompressed subchain

5 C★ ← C[: −𝜒 − 𝑘] // Compressible subchain

6 if | C★ | ≥ 2𝐾 : // The chain is long enough
7 ℓ ← max{𝜇 : | C★ ↑𝜇 | ≥ 2𝐾 } // Level of the

NIPoPoW

8 D[ℓ] ← C★ ↑ℓ // Keep all the ℓ-blocks

9 for 𝜇 ← ℓ − 1 down to 0: // For lower levels
10 𝑏★ ← C★ ↑𝜇+1 [−𝐾] // Determine pivot block

11 D[𝜇] ← C★ ↑𝜇 [−2𝐾 :] ∪ C★ ↑𝜇 {𝑏★ :} // Keep
the 2𝐾 most recent 𝜇-blocks plus all the
most recent 𝜇-blocks starting from 𝑏★

12 else: // The chain to be compressed is too short
13 ℓ ← 0

14 D[0] ← C★

15 return (D, 𝑋,Ω, ℓ)

Algorithm 1: Prover algorithm.

where 𝑏★ = C★ ↑𝜇+1 [−𝐾]). We call 𝑏★ the pivot block as it ensures

that any two consecutive levels of the construction intersect in at

least 𝐾 blocks. Furthermore, and as just described above, the header

of any block 𝑏 points back to the last block of level 𝜇, 0 ≤ 𝜇 ≤ ℓ ,
preceding 𝑏. This ensures that the𝑂 (log |C★ |) sampled blocks form

a subchain D of C★. Remark again that 𝑋 [0] points to D[0] [−1].
The Compress𝐾,𝜒,𝑘 (C) algorithm returns the headers of the blocks

of D, and the full blocks of 𝑋 , Ω, and level ℓ . To check the validity

of blocks in the unstable subchain Ω, the snapshot of block X[−1]
is attached to its header. The NIPoPoW Π is the subchain D 𝑋 Ω.
Figure 3 reflects the outcome of the compression algorithm run on

the first 40 blocks of the Bitcoin blockchain (see Figure 3a). Security

parameters are set to𝐾 = 2, 𝜒 = 9, and 𝑘 = 2. The unstable subchain

Ω gathers the last 𝑘 = 2 full blocks, the uncompressed subchain 𝑋

gathers the next 𝜒 = 9 full blocks, and the compressible subchain

C★ contains all the other 29 block headers. Note that block header

36 comes with the snapshot of its block. Figure 3b depicts the very

same subchain as Figure 3a by representing blocks as a function

of their level and by showing their pointers to the last previous

block at each level. Note that for legibility reasons, links from each

block to the genesis block have been omitted. Finally, Figure 3c

shows the result of the Compress() algorithm. The NIPoPoW built

from the first 40 blocks of the Bitcoin blockchain is the subchain

of blocks 𝐺 19 22 24 25 26 27 28 . . . 36, where 𝐺, 19, 22, 24 and

25 are 1-blocks and 24, 25, 26 and 27 are 0-blocks. The level of the

NIPoPoW is equal to 1 (see Definition 4).

5.3.3 Verifier algorithm. As briefly introduced in Section 1, before

executing the Compare() algorithm, the verifier 𝑣 broadcasts a Sync

C★ 𝑋 Ω

(a) Bitcoin before compression.

0

1

2

3

4

5

6

7

8

9

(b) The height of a block represents its level (infinite for the genesis
block), and arrows represent its inter-link data structure.

0

1

2

3

4

5

6

7

8

9

G 0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

(c) NIPoPoW of the first 40 blocks of Bitcoin.

Figure 3: Compression scheme on the first 40 blocks of Bitcoin
(𝐾 = 2, 𝜒 = 9, and 𝑘 = 2).

request
5
along with its private random number 𝜈 to synchronize

with the system. Upon receipt of annotated Sync requests, a miner

accumulates in the set 𝑉 all the random numbers 𝜈𝑖 , . . . , 𝜈 𝑗 it has

received but which it has not yet inserted into the coinbase of

the blocks it has created so far. Insertion into the coinbase can

be achieved thanks to OP_RETURN scripts, for instance. When a

prover 𝑢 receives a new valid block 𝑏 (i.e., 𝑏 can be appended to

𝑢’s locally maintained NIPoPoW Π), 𝑢 executes the Compress()
algorithm with the chain of blocks Π 𝑏 as input and broadcasts the

updated NIPoPoW Π′ to the system. Once 𝑣 receives two annotated

NIPoPoWs Π1 and Π2 (i.e., both Π1 and Π2 contain, respectively, a

block 𝑏1 and a block 𝑏2 such that 𝑏1’s and 𝑏2’s coinbases contain

𝜈), 𝑣 executes the Compare() algorithm with Π1 and Π2 as inputs.

Pseudo-code of the Compare() algorithm appears in Algorithm 2.

The Compare() algorithm also accepts whole annotated blockchains,

as its first step is to Compress() each of its inputs to be able to

compare them on an equal basis. The Compare𝐾,𝜒,𝑘 () algorithm is

parameterized by the same parameters as Compress().
Given two annotated NIPoPoWs, the algorithm looks for the

smallest level 𝜇 for which both NIPoPoWs share a common block 𝑏.

Block𝑏 is called the latest common ancestor (LCA) of both NIPoPoWs

(see Lines 13–16). The existence or nonexistence of an LCA between

any two NIPoPoWs provides crucial information on their respective

underlying blockchains C1 and C2. Specifically, the presence of

an LCA block allows the verifier to detect and therefore reject

NIPoPoWs that result from low-difficulty attacks, and the absence

of an LCA together with annotated coinbase allows a verifier to

reject both obsolete NIPoPoWs and NIPoPoWs that result from

brute-force low-difficulty attacks.

Property 1 (Latest common ancestor (LCA)). Let 𝑏 be the
LCA block of Π1 and Π2, where Π1 = Compress𝐾,𝜒,𝑘 (C1) and Π2 =

Compress𝐾,𝜒,𝑘 (C2). Let 𝜇 be the level of block 𝑏. Then,
• Level(Π1) = Level(Π2), i.e., both C1 and C2 have approxi-
mately the same number of blocks;

5
From an implementation point of view, this just requires leveraging the initial VERSION
message [10] of the Bitcoin protocol and setting the VERSION’s nonce field with a

random number (in Bitcoin, the VERSION message implements the generic and classic

Sync request).

CCS ’25, October 13–17, 2025, Taipei, Taiwan Loïc Miller, Dorian Pacaud, Nathanaël Derousseaux–Lebert, Emmanuelle Anceaume, & Romaric Ludinard

Input : C1, C2, two blockchains or NIPoPoWs annotated with the

verifier’s random number 𝜈

Output : tuple (D, 𝑋,Ω, ℓ) where
Ω is the unstable subchain of the accepted chain,

𝑋 is the uncompressed subchain of the accepted chain,

D is the compressed chain of the accepted chain,

and ℓ is the level of the accepted chain

1 function Compare𝐾,𝜒,𝑘 (C1, C2):
2 (D1, 𝑋1,Ω1, ℓ1) ←Compress𝐾,𝜒,𝑘 (C1)
3 (D2, 𝑋2,Ω2, ℓ2) ←Compress𝐾,𝜒,𝑘 (C2)
4 𝑀 ← {𝜇 ∈ N | D1 [𝜇] ∩ D2 [𝜇] ≠ ∅}
5 if 𝑀 = ∅:
6 // no block in common at the same level, i.e.,

no LCA block

7 𝑏1 ← findblock(D1, 𝑋1,Ω1, 𝜈)

8 𝑏2 ← findblock(D2, 𝑋2,Ω2, 𝜈)

9 Wait | (D1𝑋1 Ω1) {𝑏1 : } | = 𝐾 ∨ | (D2𝑋2 Ω2) {𝑏2 : } | = 𝐾
10 (D, 𝑋,Ω, ℓ) ←

highdiff((D1𝑋1 Ω1) {𝑏1 : }, (D2𝑋2 Ω2) {𝑏2 : })
11 else:
12 𝜇 ← min𝑀

13 𝑏 ← (D1 [𝜇] ∩ D2 [𝜇]) [−1] // 𝑏 is the LCA block

14 (D, 𝑋,Ω, ℓ) ←
15 highdiff((D1 {𝑏 :}𝑋1 Ω1) ↑𝜇 , (D2 {𝑏 :}𝑋2 Ω2) ↑𝜇)
16 return (D, 𝑋,Ω, ℓ)

Algorithm 2: Verifier algorithm.

• If 𝜇 = 0, both C1 and C2 are almost identical, with the exception
of their at most 2𝐾 + 𝜒 + 𝑘 most recent blocks.

We have the following lemma. Intuitively, the lemma says that if

two NIPoPoWs Π1 and Π2 share an LCA block 𝑏 at level 𝜇 > 0, then

𝑏 is followed by at least 𝐾 blocks in either Π1 or Π2.

Lemma 5.1. Let 𝑏 be the LCA block of Π1 and Π2, where Π1 =

Compress𝐾,𝜒,𝑘 (C1) and Π2 = Compress𝐾,𝜒,𝑘 (C2). Let 𝜇 be the level
of block 𝑏. If 𝜇 > 0, then |C1{𝑏 : } ↑𝜇 | > 𝐾 ∨ |C2{𝑏 : } ↑𝜇 | > 𝐾 .

Proof. By minimality of 𝜇, (Π1 ∩ Π2) ↑𝜇−1= ∅ (Line 12 of Al-
gorithm 2). Suppose by contradiction that neither Π1 nor Π2 have

𝐾 blocks after their LCA block 𝑏. Block 𝑏 therefore belongs to the

last 𝐾 blocks of level 𝜇 for both proofs. By construction (Line 11

of Algorithm 1), the last 𝐾 blocks of a proof are present at level

𝜇 − 1. Block 𝑏 is present at level 𝜇 − 1 of both Π1 and Π2, which is

impossible by the minimality of 𝜇. This completes the proof. □

If both NIPoPoWs Π1 and Π2 share an LCA block 𝑏 (Lines 13–16),

then function highdiff is called with the subchains of Π (resp.

Π2) restricted to the 𝜇-blocks that follow the 𝜇-block 𝑏. Function

highdiff returns the subchain that has accumulated the largest

quantity of difficultywithin its at least𝐾 𝜇-blocks after the 𝜇-block𝑏.

Theorem 6.9 shows that even if the adversarial blockchain contains

as many 𝜇-blocks as the honest one, their accumulated mining

difficulty cannot exceed the honest one. Thus, the adversarial prover

cannot convince the verifier by presenting a NIPoPoW built from a

blockchain that has been created during a low-difficulty attack.

On the other hand, if Π1 and Π2 do not share an LCA block (Lines

6–10), then verifier 𝑣 searches for the annotated blocks 𝑏1 and 𝑏2 in

Π1 and Π2, respectively (Lines 7 and 8). By construction, blocks 𝑏1
and𝑏2 are recent blocks (they belong to subchains𝑋1 Ω1 and𝑋2 Ω2,

respectively) and have been mined at approximately the same time.

Verifier 𝑣 can therefore use them as a temporal anchor from which

the accumulated difficulty of subsequent blocks can be checked

exactly as in the Bitcoin protocol. Specifically, if both 𝑏1 and 𝑏2
are less than 𝐾 deep from the tips of Π1 and Π2, respectively, then

𝑣 observes the system and waits until 𝑏1 or 𝑏2 are followed by 𝐾

blocks (i.e., | (D1 𝑋1 Ω1){𝑏1 : }| = 𝐾 ∨ |(D2 𝑋2 Ω2){𝑏2 : }| = 𝐾 , Line
9). Once this condition is verified, 𝑣 accepts the NIPoPoW returned

by function highdiff provided with the chains of blocks that re-

spectively follow 𝑏1 and 𝑏2. By construction, this is the subchain

that has accumulated the largest quantity of difficulty. Theorem 6.9

shows that this enables the verifier to reject NIPoPoWs that have

been generated from a blockchain created during a brute-force

low-difficulty attack.

6 Analysis
6.1 Preliminary definitions
Our analysis relies on Garay et al.’s Bitcoin Backbone with chains

of variable difficulty model [11], as well as concepts introduced

in Kiayias et al.’s protocol [19]. In particular, it strongly relies on

Garay et al.’s notion of typical executions [11]. An execution 𝐸 of

the protocol generates a sequence 𝑆 of rounds. An execution 𝐸 is

typical if the considered random variables do not deviate too much

from their expected values, i.e., at a distance 𝜀 of their expected

value. From Garay et al. [11] we have |𝑆 | > 𝑚/(16𝜏 𝑓), where 𝑚
represents the number of blocks defining an epoch (𝑚 = 2016 for

Bitcoin). Honest parties have a probability 𝑓 to create at least one

block in a round, and 𝜏 is the dampening filter in Bitcoin target’s

recalculation function. A round 𝑟 is successful if the honest parties

succeed in creating at least one block during 𝑟 , and is uniquely

successful if the honest parties succeed in creating exactly one

block during 𝑟 . Consider some block 𝑏 that extends a chain C.
We say that block 𝑏 contains the point of difficulty 𝑑 , 𝑑 ∈ R+, if
∥C∥ ≤ 𝑑 < ∥C 𝑏∥ [11]. Recall that the notation ∥C∥ represents C’s
difficulty. We denote by 𝑄𝑟 the random variable that represents the

difficulty of the block created during a uniquely successful round 𝑟 .

If 𝑟 is not uniquely successful, then 𝑄𝑟 = 0. By extension,

∑
𝑟 ∈𝑆 𝑄𝑟

represents the accumulated difficulty obtained during an execu-

tion of 𝑆 rounds. The quantity

∑
𝑗∈ 𝐽 𝐴 𝑗 represents the accumulated

difficulty obtained by the adversarial parties over a set of queries

𝐽 . Considering a set of queries rather than a set of rounds allows

the adversary to target specific rounds during which it queries the

hash function. Finally, we denote by 𝜙 the quantity 𝜌/2𝜅 . The full
version of this paper provides the formalization of all the notions

we use in our proofs [25]. More details can be directly found in

Garay et al. [11]. Table 2 contains a summary of the variables used

in the analysis.

6.2 Suppression of honest difficulty
The following technical lemmas will be deeply used to prove the

correctness of our solution. The first two show the conditions un-

der which the adversary may impose its chain on honest parties.

This can be achieved in one of two ways. Either the adversarial

Mining in Logarithmic Space with Variable Difficulty CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 2: Summary of used variables, their domain of definition, and their meaning

Domain of definition Description

𝑛𝑟 ∀𝑟 : 𝑛𝑟 ∈ N Number of total parties in round 𝑟 .

𝑡𝑟 ∀𝑟 : 𝑡𝑟 ∈ N Number of adversarial parties in round 𝑟 .

𝜌 𝜌 ∈ N Number of queries of each party.

𝜙 𝜙 ∈ Q≥0 Convenience notation. 𝜙 = 𝜌/2𝜅 .
𝛿 𝛿 ∈ (0, 1) Advantage of honest parties. For any round 𝑟 , 𝑡𝑟 ≤ (1 − 𝛿) (𝑛𝑟 − 𝑡𝑟).
𝑚 𝑚 ∈ N Length of an epoch in blocks,𝑚 = 2016 for Bitcoin.

𝑓 𝑓 ∈ (0, 1) Target probability that at least one honest party mines a block in any round 𝑟 .

𝜏 𝜏 ∈ R Dampening filter, 𝜏 = 4 for Bitcoin.

(𝛾, 𝑠) 𝛾 ∈ R, 𝑠 ∈ N Bound on variation of the number of parties.

(𝜂, 𝜃) 𝜂 ∈ (0, 1], 𝜃 ∈ [1,∞) Lower and upper bound on 𝑓 .

𝜀 𝜀 ∈ (0, 1) Quality of concentration of random variables in typical executions.

𝑄𝑟 𝑄𝑟 ∈ R Difficulty of an honest block mined in a uniquely successful round 𝑟 .

𝐷𝑟 𝐷𝑟 ∈ R Largest block difficulty among honest blocks mined in round 𝑟 .

𝐴 𝑗 𝐴 𝑗 ∈ R Difficulty of an adversarial block mined in query 𝑗 .

𝜅 𝜅 ∈ N Security parameter that represents the number of bits of the output of the hash function. 𝜅 = 256 for Bitcoin.

𝑘 𝑘 ∈ N Common prefix parameter. It represents the number of blocks of the unstable subchain of a NIPoPoW.

𝜒 𝜒 ∈ N Number of blocks of the uncompressed subchain of a NIPoPoW.

𝐾 𝐾 ∈ N Security sampling parameter.

ℓ ℓ ∈ N Typically represents the level of a block or the level of a proof.

𝛼 𝛼 ∈ R Ratio between the block difficulty ℎ of the honest parties and the one 𝑎 of the adversarial parties.

𝑝 𝑝 ∈ [0, 1] Fraction of honest computing power. We have 𝑝 = 2

3
.

𝑞 𝑞 ∈ [0, 1] Fraction of adversarial computing power. We have 𝑞 = 1

3
.

miner aims at creating more difficulty in its own chain by concen-

trating uniquely on its own chain or tries to bias the distribution

of block levels in the honest chain by "suppressing" (i.e., forking)

well-chosen blocks to replace them with its own blocks, whose

levels are different.

On the other hand, Theorem 6.2 states that in executions long

enough, the honest difficulty of the adopted blockchain dominates

the adversarial one. Proofs of these lemmas extend the ones pre-

sented in Kiayias et al. [19]. Observe that in the constant mining

difficulty setting [19], the height of a blockchain (i.e., its number of

blocks) is equivalent to its accumulated difficulty, as all the blocks

are created with the same difficulty. In the variable mining difficulty

setting, there is a difference between the height of a blockchain and

its accumulated difficulty, and so to compare C and C′, we need to

consider the different possible relationships between the height of

a chain and its associated difficulty.

Observation 1 (Pairing [11]). Consider an execution where a
valid block 𝑏 has been created by an honest party at a uniquely
successful round, such that 𝑏 is appended to chain C. Let 𝑑 ∈ R+

such that ∥C∥ ≤ 𝑑 < ∥C𝑏∥. Then if there exists a chain C′𝑏′ with
𝑏 ≠ 𝑏′ such that ∥C′∥ ≤ 𝑑 < ∥C′𝑏′∥ then 𝑏′ has been created by the
adversary.

Indeed, let 𝑟 be the uniquely successful round at which 𝑏 was

created. We show that no honest party would have created 𝑏′ at
round 𝑟 ′. Due to the synchronous setting, every new block created

and sent at round 𝑟 is received by any honest party during round

𝑟 . Consider 𝑟 ′ > 𝑟 . Since honest parties are aware of C𝑏 at round

𝑟 and, by definition of 𝑑 , ∥C∥ ≤ 𝑑 < ∥C𝑏∥, then no honest party

would have created 𝑏′ such that 𝑏′ extends C′ at any later round

𝑟 ′. Consider 𝑟 ′ < 𝑟 . If an honest party had created 𝑏′ at round
𝑟 ′ < 𝑟 , then any honest party would not have created 𝑏 at round 𝑟

as ∥C∥ < ∥C′𝑏′∥. Finally, 𝑟 ≠ 𝑟 ′ because 𝑟 is uniquely successful.

Lemma 6.1 (Suppression). If 𝑟 is a uniquely successful round and
the corresponding block 𝑏 does not belong to the chain of an honest
party at a later round, then there is a set of consecutive rounds 𝑆 and
a set 𝐽 of adversarial queries in 𝑆 such that 𝑟 ∈ 𝑆 and

∑
𝑟 ∈𝑆 𝑄𝑟 <∑

𝑗∈ 𝐽 𝐴 𝑗 .

Proof. Consider an execution in which an honest party creates

𝑏 such that 𝑏 is valid for C. By assumption of the lemma, this occurs

during a uniquely successful round, say 𝑟 , so 𝑏 is appended to C.
Let C′ be the chain adopted by an honest party at a later round 𝑟1
such that 𝑏 does not belong to C′. Let 𝑏0 be the last honest block
that belongs to the common prefix of C and C′, and 𝑟0 the round at
which 𝑏0 was created. If 𝑏0 is the genesis block, then 𝑟0 = 0. Let 𝑆 be

a sequence of consecutive rounds 𝑆 = {𝑟 ′ : 𝑟0 < 𝑟 ′ ≤ 𝑟1}. We show

that the set of adversarial queries 𝐽 exhibits more difficulty than

the ones of the honest parties during 𝑆 . We consider two cases.

• Case (1): We suppose that 𝑟1 is the first round in sequence 𝑆

at which an honest party adopts C′ such that 𝑏 ∉ C′. This
means that all the difficulty accumulated on C′ during 𝑆 has

been contributed by the adversarial queries (by Observa-

tion 1). At round 𝑟1, an honest party adopts C′. This means

that the difficulty accumulated in the blocks of C during 𝑆 is

CCS ’25, October 13–17, 2025, Taipei, Taiwan Loïc Miller, Dorian Pacaud, Nathanaël Derousseaux–Lebert, Emmanuelle Anceaume, & Romaric Ludinard

strictly smaller than the one accumulated in C′’s blocks, i.e.,∑
𝑟 ∈𝑆 𝑄𝑟 <

∑
𝑗∈ 𝐽 𝐴 𝑗 . This completes the case.

• Case (2): We now suppose that an honest party has con-

tributed at least once to C′ before round 𝑟 . We show that even

in these scenarios, the adversarial contribution is larger than

the sum of the honest contributions (in uniquely success-

ful rounds). Let 𝑆 ′ = {𝑢1, 𝑣1, 𝑢2, . . . , 𝑢𝑛, 𝑣𝑛} be a sequence of
rounds such that𝑢1 = 𝑟0+1, 𝑣𝑛 = 𝑟1 and for all 𝑖 = 1, . . . , 𝑛−1,
𝑢𝑖+1 = 𝑣𝑖 + 1. Each subsequence of rounds {𝑢𝑖 , 𝑣𝑖 } represents
the rounds during which an honest party mines on chain C★
with either C★ = C or C★ = C′. Each subsequence {𝑢𝑖 , 𝑣𝑖 } is
maximal. Observe that 𝑆 = 𝑆 ′. In the following, we call the

subsequence of consecutive rounds {𝑢𝑖 , 𝑣𝑖 }, with 𝑖 ∈ 1, . . . , 𝑛
a hook. Observe that each hook represents exactly the sit-

uation described in case (1). Specifically, if during the 𝑖-th

hook {𝑢𝑖 , 𝑣𝑖 } the honest party mines on C★ = C, then all the

difficulty accumulated on C′ during the 𝑖-th hook {𝑢𝑖 , 𝑣𝑖 } has
been contributed by the adversarial queries. Case (1) applies,

i.e.,

∑
𝑟 ∈{𝑢𝑖 ,𝑣𝑖 } 𝑄𝑟 <

∑
𝑗∈ 𝐽 𝐴 𝑗 , with 𝐽 ∈ {𝑢𝑖 , 𝑣𝑖 }. At round

𝑢𝑖+1 = 𝑣𝑖 +1, the (𝑖 +1)-th hook takes place, the honest party

now mines on C★ = C′, and all the difficulty accumulated on

C during the (𝑖 + 1)-th hook is contributed by the adversar-

ial queries. Case (1) applies, i.e.,

∑
𝑟 ∈{𝑢𝑖+1,𝑣𝑖+1 } 𝑄𝑟 <

∑
𝑗∈ 𝐽 𝐴 𝑗 ,

with 𝐽 ∈ {𝑢𝑖+1, 𝑣𝑖+1}. The same argument applies for all the

hooks of 𝑆 ′, which covers all the rounds of 𝑆 . By an accumu-

lation argument, this case completes the proof.

□

Lemma 6.2 (Unsuppressibility). Given a typical execution with
an honest party and an adversary, every set of consecutive rounds𝑈
has a subset 𝑆 of uniquely successful rounds such that the following
conditions hold:

(1)
∑
𝑟 ∈𝑆 𝑄𝑟 ≥

∑
𝑟 ∈𝑈 𝑄𝑟−2

∑
𝑗∈𝑈 𝐴 𝑗−2(1−𝜀) (1−𝜃 𝑓)𝜙

∑
𝑟 ∈ 𝐽 (𝑛𝑟−

𝑡𝑟), where 𝐽 indexes the queries of the adversary in a set of
𝑚/(16𝜏 𝑓) rounds;

(2) After the last round in 𝑆 , the blocks corresponding to 𝑆 belong
to the chain of every honest party.

Proof. Let𝑈 ′ be the set of consecutive rounds that contains ex-
actly𝑈 and the𝑚/16𝜏 𝑓 rounds that come before and after𝑈 . Taking

the contrapositive of Theorem 6.1, we build 𝑆 such that 𝑆 contains

all those uniquely successful rounds 𝑟 ∈ 𝑈 during which blocks

were not suppressed by the adversary, i.e., such that for any set

of consecutive rounds 𝑆 ′ ⊆ 𝑈 ′ containing 𝑟 , ∑𝑟 ∈𝑆 𝑄𝑟 >
∑
𝑗∈ 𝐽 ′ 𝐴 𝑗 ,

where 𝐽 ′ indexes the queries of the adversary in 𝑆 ′. Note that in
a (𝜂, 𝜃)-good typical execution and (𝛾, 𝑠)-respecting environment,

such 𝑆 ′ may not contain elements outside𝑈 ′.
We need to prove the following statement:

∑
𝑟 ∈𝑈 𝑄𝑟 −

∑
𝑟 ∈𝑆 𝑄𝑟 ≤

2

∑
𝑗∈𝑈 𝐴 𝑗+2(1−𝜀) (1−𝜃 𝑓)𝜙

∑
𝑟 ∈ 𝐽 (𝑛𝑟−𝑡𝑟). We focus on the uniquely

successful rounds in 𝑈 during which the blocks were suppressed

by the adversary, i.e., the rounds not in 𝑆 . Consider a collection T
of sets 𝑇 of consecutive rounds with the following properties.

• ∀𝑇 ∈ T ,∑𝑟 ∈𝑇 𝑄𝑟 ≤
∑
𝑗∈ 𝐽 𝐴 𝑗 , where 𝐽 indexes the queries of

the adversary in 𝑇 ;

• ∀𝑟 ∈ 𝑈 \ 𝑆 , there is a set of rounds 𝑇 ∈ T that contains 𝑟 ;

• |T | is minimum among all collections with the above prop-

erties.

Observe that by the minimality condition on T , no round 𝑟 with

𝐴𝑟 > 0 belongs to more than two sets of T . If that was the case, then
there would be three sets 𝑇1,𝑇2,𝑇3 in T with 𝑇1 ∩𝑇2 ∩𝑇3 ≠ ∅. But
then we could keep the two sets with the leftmost and rightmost

endpoints, contradicting the minimality of T . Furthermore, by

construction of𝑈 ′, no round in 𝑈 ′ \𝑈 belongs to more than one

set of rounds 𝑇 . Thus,∑︁
𝑟 ∈𝑈

𝑄𝑟 −
∑︁
𝑟 ∈𝑆

𝑄𝑟 =
∑︁
𝑟 ∈𝑈 \𝑆

𝑄𝑟 ≤
∑︁
𝑇 ∈T

∑︁
𝑟 ∈𝑇

𝑄𝑟

≤
∑︁
𝑇 ∈T

∑︁
𝑗∈ 𝐽1

𝐴 𝑗 ≤ 2

∑︁
𝑗∈ 𝐽2

𝐴 𝑗 +
∑︁
𝑗∈ 𝐽3

𝐴 𝑗 ,

where 𝐽1 (resp. 𝐽2) indexes the adversarial requests in set 𝑇 (resp.

𝑈), and 𝐽3 those in set𝑈 ′ \𝑈 . The third inequality holds because

every round in which the adversary was successful is counted at

most twice inside 𝑈 and at most once in 𝑈 ′ \ 𝑈 . Finally, using
|𝑈 ′ \𝑈 | = 2𝑚/16𝜏 𝑓 and ∑

𝑗∈ 𝐽 𝐴 𝑗 < (1− 𝜀) (1−𝜃 𝑓)𝜙
∑
𝑟 ∈ 𝐽3 (𝑛𝑟 − 𝑡𝑟),

we obtain the stated bound.

By assumption, the adversary is 1/3-bounded, which guarantees

that in any typical execution, in every set of consecutive rounds,

there exists a positive quantity of honest difficulty that can never

be suppressed by the adversary. This completes the proof. □

6.3 Proofs of the succinctness, completeness,
and onlineness properties

Intuitively, the ℓ-block Common-Prefix lemma shows that while the

difficulty accumulated by the ℓ-blocks of the adversarial blockchain

for a given period of time can be greater than the one accumulated

by the honest ℓ-blocks, at some point the honest parties will accu-

mulate more difficulty than what the adversary can ever achieve.

Lemma 6.3 (ℓ-block Common-Prefix). Given a typical execu-
tion with a 1/3-bounded PPT adversary, such that blockchain C is
maintained by the honest parties at round 𝑟 , and there exists another
blockchain C′ such that at round 𝑟 the ℓ-blocks of C′ \ (C ∩ C′) have
accumulated at least𝐷A

min
(ℓ) = (1+𝜀)𝜉ℓ𝜙𝛾𝑡𝐾A/𝑓 quantity difficulty,

then with overwhelming probability, we have ∥C ↑ℓ ∥ > ∥C′ ↑ℓ ∥,
where max𝑟 ∈𝑆 𝑡𝑟 ≤ 𝛾𝑡 .

Proof. Consider a typical execution 𝐸 that satisfies the assump-

tions of the lemma. We observe the execution at round 𝑟 . Let 𝑟 ∗ be
the round during which the last honest block 𝑏∗ on C★ = C ∩ C′
was computed. If no such block exists, we set 𝑟 ∗ = 0. Consider the

sequence of rounds 𝑆 = {𝑖 : 𝑟 ∗ < 𝑖 ≤ 𝑟 } of the typical execution
𝐸. Because 𝐸 is typical, we can apply Lemma 6.2. By this lemma,

the quantity of honest difficulty accumulated on C \ C★ is strictly

greater than 0. Furthermore, Lemma 6.2 imposes no constraints

on the positions of the unsuppressed honest blocks within the ex-

ecution. So we can split the sequence 𝑆 into two subsequences

𝑆1 = {𝑖 : 𝑟 ∗ < 𝑖 ≤ 𝑟 ∗′} and 𝑆2 = {𝑖 : 𝑟 ∗′ < 𝑖 ≤ 𝑟 }, such that 𝑆1 is the

sequence of rounds during which all the honest blocks have been

suppressed by adversarial requests. I.e., round 𝑟 ∗′ is the last round
beyond which adversarial queries cannot suppress honest blocks.

Now, by Lemma 6.2, 𝑆2 is non-empty. The cumulated difficulty on

C \ C★ is minimal if, during 𝑆2, the adversary does not contribute

to adversarial difficulty on it.

Mining in Logarithmic Space with Variable Difficulty CCS ’25, October 13–17, 2025, Taipei, Taiwan

In Section 6.4.1, through a competition between an honest team

and an adversarial one, we analyze the maximal number of blocks

𝐾A the adversarial team can produce such that from this 𝐾A-th
block onward the adversarial team will never be able to catch up

to the sequence of blocks concurrently produced by the honest

team. The number of rounds needed to produce those 𝐾A blocks is

𝐾A/𝑓 , where 𝑓 is the probability to mine a block during one round.

Thus, round 𝑟 ∗′ in sequence 𝑆1 represents exactly the𝐾A/𝑓 -th from
which the adversarial chain cannot accumulate more difficulty than

what can be achieved by the honest one. Specifically, the quantity

of difficulty accumulated on C′ \ C★ during 𝑆1 is equal to
∑
𝑗∈ 𝐽1 𝐴 𝑗 ,

where 𝐽1 indexes all the adversarial queries in the sequence 𝑆1. Each

of the rounds that contribute to that quantity of difficulty produces

an ℓ-block with probability 𝜉ℓ = 1/2ℓ . Thus, with overwhelming

probability, the quantity of difficulty of ℓ-blocks on C′ \ C∗ during
𝑆1 is equal to 𝜉ℓ

∑
𝑗∈ 𝐽1 𝐴 𝑗 < (1+𝜀)𝜉ℓ𝜙

∑
𝑟 ∈𝑆1 𝑡𝑟 ≤ (1+𝜀)𝜉ℓ𝜙𝛾𝑡𝐾A/𝑓 ,

where max𝑟 ∈𝑆 𝑡𝑟 ≤ 𝛾𝑡 in a (𝛾, 𝑠)-respecting execution. The quantity
of difficulty accumulated on C minus the one accumulated on C′
during 𝑆 is equal to the one accumulated on C minus the one

accumulated on C′ during 𝑆2. This quantity of difficulty is strictly

greater than 0 by Lemma 6.2 and by the above argumentation. This

completes the proof. □

Corollary 6.4 (Exponential decay of ℓ-block difficulty

threshold). Quantity 𝐷A
min
(ℓ) decays exponentially with level ℓ .

Proof. From our model, the variables 𝜀, 𝜙,𝛾 , and 𝑓 are constants.

The term 𝐾A
min

is a bound that uniquely depends on the relative

computational power of the parties and 𝜀. The term 𝑡 is bounded

within an execution. Thus the main variable affecting the term is

𝜉ℓ . By definition of a block level (see Definition 3), 𝜉ℓ decreases

exponentially with ℓ . This completes the proof of the corollary. □

By Corollary 6.4, 𝐷A
min
(0) is the highest quantity of difficulty

required to determine the honest blockchain.

Theorem 6.5 (Succinctness). For any infinite sequence 𝑆 of
rounds and for any subsequence 𝑆 𝑗 ⊆ 𝑆 of consecutive rounds, any
honest miner stores 𝑂 (𝐾2

log(𝑟)) blocks at round 𝑟 ∈ 𝑆 𝑗 .

Proof. Consider a proof Π generated by an honest prover from

an underlying chain C, and suppose, in contradiction, that |Π | ∈
𝜔 (𝐾 log(𝑟)). Consider (D, 𝑋,Ω, ℓ) = Compress(C). By assumption

on Π, we have
∑
𝜇∈N |D[𝜇] | ∈ 𝜔 (𝐾 log(𝑟)), since 𝜒, 𝑘 are constant

natural integers. Let ℓ = max{𝜇 ∈ N | D[𝜇] ≠ ∅}, and let us con-

sider some 𝜇 ≤ ℓ such that D[𝜇] ∈ 𝜔 (𝐾 log(𝑟)) and thus D[𝜇] ∈
Ω(𝐾2

log(𝑟)). Note 𝑟0, 𝑟1 the rounds in which D[𝜇] [0], D[𝜇] [−1]
were created, respectively. Consider𝑈 the set of consecutive rounds

between 𝑟0 and 𝑟1. We have |𝑈 | ≥ |D[𝜇] | ≥ 𝐾 . By definition of 𝜇,

at least 𝐾2
blocks must have been created during𝑈 , among which

(1−𝜀)𝐾2/2 ≥ 2𝐾 are (𝜇+1)-blocks, which belong toD[𝜇+1] aswell.
The case 𝜇 = ℓ contradicts the maximality of ℓ , and thus the assump-

tion Π ∈ 𝜔 (𝐾 log(𝑟)). If 𝜇 < ℓ , then we haveD[𝜇] ∈ Ω(𝐾2
log(𝑟)),

and D[𝜇 + 1] ∈ 𝑂 (𝐾). Since D[𝜇] = C[: −𝜒 − 𝑘] ↑𝜇 [−2𝐾 :] ∪ C[:
−𝜒 − 𝑘] ↑𝜇 {D[𝜇 + 1] [−𝐾] :} and |C[: −𝜒 − 𝑘] ↑𝜇 [−2𝐾 :] | = 2𝐾 ,

we have C[: −𝜒 − 𝑘] ↑𝜇 {D[𝜇 + 1] [−𝐾] :} ∈ Ω(𝐾2
log(𝑟)).

Since D[𝜇 + 1] ∈ 𝑂 (𝐾), |D[𝜇] | ≤ 2𝐾 +𝑂 (𝐾), which contradicts

D[𝜇] ∈ Ω(𝐾2
log(𝑟)), completing the proof. □

0 (
20

09
-01

)

20
00

00
 (2

01
2-0

9)

40
00

00
 (2

01
6-0

2)

60
00

00
 (2

01
9-1

0)

80
00

00
 (2

02
3-0

7)

Block height (date)

0

2000

4000

6000

8000

NI
Po

Po
W

 si
ze

2 K log(h)
3 K log(h)

Figure 4: Evolution of the number of blocks kept in the Bit-
coin NIPoPoW as a function of the number of blocks in the
Bitcoin blockchain. Setting: 𝐾 = 208, 𝜒 = 4032, and 𝑘 = 323.

On October 11, 2024, the Bitcoin Mainnet blockchain consisted

of 865,042 blocks. Figure 4 shows the size of Bitcoin NIPoPoW

upon receipt of a new block. Its size varies polylogarithmically with

the size of Bitcoin’s blockchain, which illustrates the succinctness

property. Analysis of parameter 𝐾 is detailed in Section 6.4.

Theorem 6.6 (Completeness:). For any blockchain C maintained
by an honest party and any block𝑏 valid for C, letΠ = Compress (C).
Then Compress (C 𝑏) = Compress (Π 𝑏).

Proof. First block 𝑏 will be included in both proofs at the end

of the unstable subchain. Now, for all the other ℓ-blocks that are

sampled from C 𝑏, they already appear in Π at the right level ℓ of

D and will be shifted by one position on the left if the first block

of the uncompressed subchain is an ℓ-block, making the former

ℓ-block irrelevant for the new proof. In any case, the new block

𝑏 will not require sampling blocks different from 𝑏 that were not

previously in Π. This completes the proof of the theorem. □

Theorem 6.7 (Onlineness). For any blockchain C maintained by
an honest party, any block 𝑏 valid for C, let Π = Compress𝐾,𝜒,𝑘 (C).
We have Compress𝐾,𝜒,𝑘 (C 𝑏) = Compress𝐾,𝜒,𝑘 (Π 𝑏).

Proof. By Algorithm 5.3.2, Π ⊆ C, and the snapshot of C[−𝑘 −
1] is equal to the snapshot of Π[−𝑘 − 1]. By construction of C, once
all the blocks of C[−𝑘 :] have been validated based on the snapshot

of C[−𝑘 − 1], the snapshot of C[−1] represents the state of C. By
Algorithm 5.3.2, C[−𝑘 :] = Π[−𝑘 :]. Thus the snapshot of Π[−1]
represents the state of Π and the state of C. This completes the

proof of the theorem. □

Figure 5 shows the latency of an update on the Bitcoin NIPoPoW,

that is, the time that elapses, at the prover, between the reception

of a new block and the time the NIPoPoW is updated with this new

block. This plot illustrates how much a prover needs to “pay” to

build a NIPoPoW. The median time to update the proof is 2.73 ms.

The time to update the proof varies logarithmically with the number

of blocks. Note that the latency of an update decreases each time

the level of the NIPoPoW increases. This can be observed on the

lower part of the plot. This comes from the fact that when the level

of the NIPoPoW increases, say from ℓ to ℓ + 1, all the ℓ + 1-blocks
that were at level ℓ of the NIPoPoW are now sufficiently numerous

CCS ’25, October 13–17, 2025, Taipei, Taiwan Loïc Miller, Dorian Pacaud, Nathanaël Derousseaux–Lebert, Emmanuelle Anceaume, & Romaric Ludinard

0 (
20

09
-01

)

20
00

00
 (2

01
2-0

9)

40
00

00
 (2

01
6-0

2)

60
00

00
 (2

01
9-1

0)

80
00

00
 (2

02
3-0

7)

Block height (date)

0

2

4

6

8

La
te

nc
y

(m
s)

Figure 5: Latency of the NIPoPoW generation as a function of the
number of added blocks. Vertical bars represent the time instants
at which the NIPoPoW level changes. Setting: 𝐾 = 208, 𝜒 = 4032, and
𝑘 = 323.

(i.e., their cardinal number reaches 2𝐾) to belong to the new level

of the NIPoPoW (i.e., ℓ + 1). Thus it takes less time for the prover

to update the NIPoPoW when it receives an ℓ or ℓ + 1 block.

6.4 Proof of the security property
The properties of NIPoPoW in a variable setting rely on the security

parameters 𝐾 , 𝜒 , and 𝑘 . A conservative evaluation of the common

prefix parameter 𝑘 gives 𝑘 = 323 (see Section 5.3.2), and the in-

compressibility parameter 𝜒 is set to 2𝑚 so that verifiers can verify

block mining difficulties of the most recent blocks of a NIPoPoW,

in particular to detect brute-force low-difficulty attacks (see Sec-

tion 5.3.3). The security parameter 𝐾 must be set so that if the

verifier receives two NIPoPoWs, Π and Π′, where Π = Compress(C),
with C the honest blockchain, and Π′ is presented by an adversar-

ial prover, then with overwhelming probability, starting from the

last common ℓ-block, for ℓ ≥ 0, the last 2𝐾 sampled ℓ-blocks are

sufficient to convince the verifier to accept Π.
Let C be the honest blockchain such that at some point in the

execution the adversarial miner forks C at ℓ-block 𝑏★ to mine its

own blockchain C′. The remainder of the section aims at finding𝐾H
and 𝐾A . 𝐾H represents the number of blocks in C \ (C ∩ C′) such
that ∥C\(C∩C′)∥ > ∥C′\(C∩C′)∥ with overwhelming probability.

Similarly, 𝐾A represents the number of blocks in C′ \ (C ∩ C′)
such that ∥C \ (C ∩ C′)∥ > ∥C′ \ (C ∩ C′)∥ with overwhelming

probability. The security parameter 𝐾 will therefore be set to the

maximum of both 𝐾A and 𝐾H . We detail the computation of 𝐾H .
The argument for the dimensioning of 𝐾A is similar.

6.4.1 Dimensioning of parameter 𝐾 . We model the mining process

as a two-phase competition between two teams, the adversarial

team and the honest nodes team. Both teams start at their last

common block, 𝑏★. In the first phase, both the honest team and the

adversary create their own blocks until the honest team has created

𝑛 blocks. In the second phase, both teams continue to create their

own blocks until either the adversarial team catches up and exceeds

the accumulated quantity of difficulty of the honest team, in which

case it wins the competition, or else the adversarial team is so far

behind that it is hopeless for it to ever catch up to the quantity of

difficulty of the honest blockchain. We assume that the competition

takes place within an epoch, which means that the honest target 𝑇

is constant during the competition. We assume that the adversary

can mine its own blocks with a mining difficulty different from that

of the honest team. Let 𝛼 = ℎ/𝑎, where ℎ (resp. 𝑎) is the difficulty

of one honest (resp. adversarial) block. We denote by 𝐶𝛼𝑛 the event

that the adversarial subchain C′ \ (C ∩ C′) catches up with the

honest subchain C \ (C ∩ C′) after 𝑛 blocks have been appended

by the honest team to block 𝑏★.

We determine the probabilityP{𝐶𝛼𝑛 } by combining the gambler’s

ruin problem [18] and the Poisson distribution. The gambler’s ruin

problem computes 𝑃𝑟𝑢𝑖𝑛 (𝑀), the probability that the adversary will
catch up to the honest team, given an initial gap 𝑀 , where 𝑀 is

the difference between the accumulated difficulty on the honest

subchain and the one on the adversarial subchain i.e., 𝑀 = ∥C \
(C∩C′)∥ − ∥C′ \ (C ∩C′)∥. Assuming that block creations happen

with a known average rate and independently of the time since the

last block creation, we can use the Poisson distribution to compute

the probability that the adversary will be able to create a given

number of blocks during a fixed interval of time.

We model the evolution of the gambler’s payoff along the game

by a homogeneous discrete-time Markov chain 𝑋 = {𝑋𝑘 , 𝑘 ≥ 0},
where𝑀 ∈ N is the initial wealth of the gambler (𝑋0 =𝑀) with

P{𝑋𝑘 = 𝑗} = 𝑝 𝑗 , −𝜈 ≤ 𝑗 < ∞,

where 𝜈 is the maximum possible loss with the assumption that

𝑝−𝜈 ≠ 0. The gambler must stop playing when his wealth is less

than 𝜈 , in which case the gambler is ruined. The probability of ruin

𝑃𝑟𝑢𝑖𝑛 (𝑀) depends on the payoff distribution {𝑝 𝑗 }−𝜈≤0<∞ and on

the initial wealth 𝑀 . We know that 𝑃𝑟𝑢𝑖𝑛 (𝑀) = 1 if the expected

value of 𝑋 is non-positive, so we assume that

E(𝑋) =
∞∑︁

𝑘=−𝜈
𝑘𝑝𝑘 > 0.

We assume that𝑀 ≥ 𝜈 , otherwise the gambler is already ruined and

∀𝑀 < 𝜈, 𝑃𝑟𝑢𝑖𝑛 (𝑀) = 1 (see [18]). We define the generating function

𝑝 (𝑧) as

𝑝 (𝑧) =
∞∑︁

𝑘=−𝜈
𝑝𝑘𝑧

𝑘 . (1)

The analogy between the mining process competition and the gam-

bler’s ruin problem is as follows. At each step 𝑘 of the competition,

𝑋𝑘 = −𝑎 with P{𝑋𝑘 = −𝑎} = 𝑝−𝑎 and the gap is reduced by 𝑎, or

𝑋𝑘 = ℎ with P{𝑋𝑘 = ℎ} = 𝑝ℎ and the gap is increased by ℎ. We

have 𝜈 = 𝑎, and Equation (1) becomes

𝑝 (𝑧) = 𝑝−𝑎𝑧−𝑎 + 𝑝ℎ𝑧ℎ . (2)

Let 𝑝 (resp. 𝑞) be the mining power of the honest team (resp.

adversary) such that 𝑝 + 𝑞 = 1. When the adversary mines a block

with target 𝛼𝑇 , 𝑝−𝑎 represents the probability that the next block

is mined by the adversary. Similarly, 𝑝ℎ represents the probability

that the next block is mined by the honest team. We consider a

time interval during which 𝑧 blocks are mined with target 𝑇 (i.e.,

when 𝛼 = 1) are created. Among the 𝑧 blocks, 𝑞𝑧 of them have been

created by the adversary and 𝑝𝑧 ones by the honest team. Now if

the adversary mines with target 𝛼𝑇 , the adversary will mine 𝛼𝑞𝑧

blocks during the very same interval so that the total number of

Mining in Logarithmic Space with Variable Difficulty CCS ’25, October 13–17, 2025, Taipei, Taiwan

blocks during the time interval will no longer be 𝑧 but 𝛼𝑞𝑧 + 𝑝𝑧,
where 𝛼𝑞𝑧 is the number of blocks belonging to the adversary and

𝑝𝑧 to the honest team. Finally, determining 𝑝𝑎 and 𝑝−𝑏 comes down

to calculating the proportion of blocks belonging to, respectively,

the adversarial and honest subchains among the 𝛼𝑞𝑧 + 𝑝𝑧 blocks
mined in total during the considered time interval. We have

𝑝−𝑎 =
𝛼𝑞𝑧

𝑝𝑧 + 𝛼𝑞𝑧 =
𝑞𝛼

𝑝 + 𝑞𝛼 and 𝑝ℎ =
𝑝𝑧

𝑝𝑧 + 𝛼𝑞𝑧 =
𝑝

𝑝 + 𝑞𝛼 .

For integers𝑛 > 0 and 𝑟 ≥ 0, the complete symmetric polynomial

of order 𝑟 in the variables 𝑧1, . . . , 𝑧𝑛 is defined as the sum of all

products of the variables 𝑧1, . . . , 𝑧𝑛 of degree 𝑟 , that is:

Φ𝑛,𝑟 (𝑧1, . . . , 𝑧𝑛) =
∑︁
𝑖 𝑗 ≥0,

𝑖1+···+𝑖𝑛=𝑟

𝑛∏
𝑗=1

𝑧
𝑖 𝑗
𝑗
.

Theorem 6.8 gives the probability 𝑃𝑟𝑢𝑖𝑛 (𝑀) that the adversary
catches up with the honest subchain given the initial gap𝑀 ≥ 𝜈 .

Theorem 6.8 ([18]). Equation 𝑝 (𝑧) = 1 has 𝜈 solutions (counting
multiplicities) in the unit disk |𝑧 | < 1 of the complex plane, which we
denote as 𝜂 𝑗 (for 1 ≤ 𝑗 ≤ 𝜈). The probability of ruin is given by

𝑃ruin (𝑀) =
𝜈∑︁
𝑛=1

Φ𝑛,𝑀−𝑛+1 (𝜂1, . . . , 𝜂𝑛)
𝑛−1∏
𝑗=1

(1 − 𝜂 𝑗) .

When the roots 𝜂1, . . . , 𝜂𝜈 are distinct, we can use the following alter-
native expression:

𝑃ruin (𝑀) =
𝜈∑︁
𝑗=1

𝜂𝑀𝑗

𝜈∏
𝑖=1
𝑖≠𝑗

1 − 𝜂𝑖
𝜂 𝑗 − 𝜂𝑖

.

We combine the gambler’s ruin problem with the Poisson distri-

bution inspired by [28] to derive P{𝐶𝛼𝑛 }. We consider all possible

initial gaps between the adversary subchain and the honest team

when the honest team has produced 𝑛 blocks in C\ (C∩C′). Specif-
ically, for 𝑖 ≥ 0, we set𝑀𝑖 = 𝑛ℎ− 𝑖𝑎, which represents the gap when

the adversary has produced 𝑖 blocks during the time the honest

team has produced 𝑛 blocks. Let 𝜆 represent the average number of

blocks produced by the adversary during the time interval 𝐼𝑛 , where

𝐼𝑛 is the period of time during which the honest team produces 𝑛

blocks. When the adversary mines blocks with target𝑇 , 𝑧 = 𝑞𝑧 +𝑝𝑧
represents the total number of blocks mined during a time interval

𝐽𝑧 , where 𝐽𝑧 represents the time interval during which 𝑧 blocks

have been mined by both parties when the adversary mines with

honest target 𝑇 (i.e., 𝛼 = 1). Recall that 𝑞𝑧 represents the number

of adversarial blocks and 𝑝𝑧 the number of blocks of the honest

team. When the adversary mines with target 𝛼𝑇 (𝛼 ≠ 1), the total

number of blocks mined during 𝐽𝑧 becomes 𝛼𝑞𝑧+𝑝𝑧. Consequently,
to mine 𝑛 blocks, the corresponding time interval 𝐼𝑛 must satisfy

𝐼𝑛 =
𝑛

𝑝 𝑧
𝐽𝑧 .

The adversary produces 𝛼𝑞𝑧 blocks during 𝐽𝑧 , therefore

𝜆 =
𝛼𝑞𝑧 𝐼𝑛

𝐽𝑧
=
𝛼𝑞 𝑛

𝑝
.

The number of blocks 𝑋 produced by the adversary during 𝐼𝑛
follows a Poisson distribution with parameter 𝜆. The set {{𝑋 =

𝑖; 𝜆}; 𝑖 ≥ 0} is a complete system of events with P{𝑋 = 𝑖; 𝜆} ≠ 0

and 𝑃𝑟𝑢𝑖𝑛 (𝑀𝑖) = P{𝐶𝛼𝑛 | {𝑋 = 𝑖; 𝜆}}. The total probability P{𝐶𝛼𝑛 }
for the adversary to catch up is given by

P{𝐶𝛼𝑛 } =
∞∑︁
𝑖=0

P{𝑋 = 𝑖; 𝜆}P{𝐶𝛼𝑛 | {𝑋 = 𝑖; 𝜆}}

=

∞∑︁
𝑖=0

P{𝑋 = 𝑖; 𝜆}𝑃𝑟𝑢𝑖𝑛 (𝑀𝑖)

=

⌊𝑛𝛼−1⌋∑︁
𝑖=0

𝜆𝑖𝑒−𝜆

𝑖!
𝑃𝑟𝑢𝑖𝑛 (𝑀𝑖) +

∞∑︁
𝑖=⌊𝑛𝛼−1⌋+1

𝜆𝑖𝑒−𝜆

𝑖!

= 1 −
(
1 −

⌊𝑛𝛼−1⌋∑︁
𝑖=0

𝜆𝑖𝑒−𝜆

𝑖!
𝑃𝑟𝑢𝑖𝑛 (𝑀𝑖)

−
(
𝑒−𝜆

∞∑︁
𝑖=0

𝜆𝑖

𝑖!
−
⌊𝑛𝛼−1⌋∑︁
𝑖=0

𝜆𝑖𝑒−𝜆

𝑖!

))
= 1 −

⌊𝑛𝛼−1⌋∑︁
𝑖=0

𝜆𝑖𝑒−𝜆

𝑖!

(
1 − 𝑃𝑟𝑢𝑖𝑛 (𝑀𝑖)

)
.

Let 𝜀 ∈ (0, 1). We set 𝐾H = max𝛼 inf𝑛≥0{P{𝐶𝛼𝑛 } < 𝜀} and we

denote by 𝐸 the event that ∥C \ (C ∩ C′)∥ > ∥C′ \ (C ∩ C′)∥
given that 𝐾H blocks have been appended to C \ (C∩𝐶′). Let 𝐸 be

the complementary event of 𝐸. Since 𝐸 ⊆ 𝐶𝛼
𝐾H

, we have P{𝐸} ≤
P{𝐶𝛼

𝐾H
} < 𝜀. Thus, we have P{𝐸} > 1 − 𝜀. The argument for

parameter 𝐾A is similar except that during the first phase of the

two-phase competition, both the honest team and the adversary

create their own blocks until the adversary has created 𝑛𝑎 blocks.

We determine the probability of 𝐶𝛼𝑛𝑎 , i.e., the probability that the

adversarial subchain C′ \ (C ∩ C′) catches up with the honest

subchain C \ (C ∩ C′) after 𝑛𝑎 blocks have been appended by the

adversarial team to block 𝑏★. Let 𝑀𝑖 = 𝑖ℎ − 𝑛𝑎𝑎. We introduce

the random variable 𝑋ℎ ∼ Poisson(𝜆ℎ), which counts the number

of blocks the honest team produces in the time it takes for the

adversary to mine 𝑛𝑎 blocks. Quantity 𝜆ℎ = 𝑝𝑛𝑎/𝛼𝑞 is the expected
number of honest blocks generated over that same interval.

P{𝐶𝛼𝑛𝑎 } =

⌊
1+𝑛𝑎
𝛼

⌋∑︁
𝑖=0

𝜆𝑖
ℎ
𝑒−𝜆ℎ

𝑖!
+

∞∑︁
𝑖=

⌊
1+𝑛𝑎
𝛼

⌋
+1

𝜆𝑖
ℎ
𝑒−𝜆ℎ

𝑖!
𝑃𝑟𝑢𝑖𝑛 (𝑀𝑖).

We set 𝐾A = max𝛼 inf𝑛𝑎≥0{P{𝐶𝛼𝑛𝑎 } < 𝜀}, and finally set 𝐾 as

𝐾 =𝑚𝑎𝑥 (𝐾A, 𝐾H).
For conservative reasons, we take𝐾H = 208 and𝐾A = 32, which

are obtainedwhen 𝜀 = 10
−6
, whichmeans that when𝐾 = 208 blocks

have been mined on either C \ (C ∩C′) or C′ \ (C ∩C′), then with

probability 1−𝜀, ∥C \ (C ∩C′)∥ > ∥C′ \ (C ∩C′)∥. More details on

the impact of 𝛼 are discussed in the full version of this paper [25].

Figure 6 compares, for each level ℓ ≥ 0, the accumulated difficulty

of the last𝐾 blocks of the Bitcoin blockchain up to October 11, 2024,

with the theoretical bound 𝐷A
min
(ℓ), when 𝐾 is set to 208. It clearly

shows that 𝐾 blocks are sufficient to accumulate 𝐷A
min
(ℓ) quantity

of difficulty for each level ℓ ≥ 0.

Based on the previous results, we can now show that our solution

is secure in the presence of a 1/3-adversary.

Theorem 6.9 (Security). Given a typical execution with a 1/3-
bounded PPT adversary. Let 𝑟 be a round of the execution. Let Π =

CCS ’25, October 13–17, 2025, Taipei, Taiwan Loïc Miller, Dorian Pacaud, Nathanaël Derousseaux–Lebert, Emmanuelle Anceaume, & Romaric Ludinard

0 1 2 3 4 5 6 7 8 9 10 11
Level

1013

1014

1015

1016

Di
ffi

cu
lty

Actual difficulty
Theoretical bound Dmin()

Figure 6:Comparison between the theoretical accumulated quantity
of difficulty 𝐷A

min
(ℓ) and the one accumulated in the last 𝐾 blocks

of level ℓ ≥ 0 of the Bitcoin blockchain on October 11, 2024. Setting:
𝐾 = 208, 𝜒 = 4032, and 𝑘 = 323.

Compress𝐾,𝜒,𝑘 (C) be the NIPoPoW generated from blockchain C by
an honest prover at round 𝑟 . Let Π′ be a proof generated by the
adversarial prover at round 𝑟 . Let Π★ = Compare𝐾,𝜒,𝑘 (Π,Π′) be the
proof accepted by the verifier algorithm. Then, with overwhelming
probability, the verifier accepts the honest NIPoPoW, i.e., ∥Π★{(Π★ ∩
C)[−1] :}∥ ≥ ∥C{(Π★ ∩ C)[−1] :}∥.

Proof. Let 𝑀 be the set of levels where both chains share at

least one block, i.e., 𝑀 = {𝜇 ∈ N | (Π ∩ Π′) ↑𝜇≠ ∅}. If 𝑀 is not

empty, we set 𝜇 = min(𝑀); otherwise, we set 𝜇 = ⊥. Three cases
must be considered.

𝜇 = 0: By definition, (Π★ ∩ C)[−1] represents the last block 𝑏
shared by both Π★

and C, and Π★{(Π★ ∩ C)[−1] :} represents the
subchain of Π★

starting from block 𝑏 to the last block of Π★
. By

assumption of the case, 𝜇 = 0, block 𝑏 therefore belongs to the last

2𝐾 + 𝜒 + 𝑘 blocks of both C and Π★
. At round 𝑟 , the honest prover

maintains C. Thus, for any other chain C′, we have ∥C∥ ≥ ∥C′∥.
Hence, the only possibility for a verifier to accept Π★ = Π′ is that
the adversarial prover correctly executes Compress (Π′ 𝑏′) with𝑏′ a
valid block mined with legitimate difficulty. Indeed, by assumption

of the case, the legitimacy of 𝑏′’s difficulty can be checked with the

last 2𝐾 + 𝜒 + 𝑘 blocks. This completes the case proof.

𝜇 > 0: Let C′ be any chain different from the honest chain C.
By Lemma 6.3, there exists a quantity 𝐷A

min
(𝜇) such that if ∥C′ \

(C ∩ C′) ↑𝜇 ∥ ≥ 𝐷A
min
(𝜇), then, with overwhelming probability,

∥C \ (C ∩ C′) ↑𝜇 ∥ > ∥C′ \ (C ∩ C′) ↑𝜇 ∥. The combination of

Corollary 6.4 and the Bitcoin trace (Figure 6) shows that the𝐾 blocks

at level 𝜇 are sufficient to accumulate the quantity of difficulty

𝐷A
min
(𝜇), this quantity of difficulty being exponentially smaller than

the one required at level 0. By Algorithm 2, ifΠ = Compress(C), then
Π{𝑏 : } ↑𝜇= C{𝑏 : } ↑𝜇 . Furthermore, by Lemma 5.1, either Π or Π′

have at least𝐾 𝜇-blocks after the LCA block𝑏. Function highdiff()
in Algorithm 2 returns the subchain restricted to the last𝐾 𝜇-blocks

that has accumulated the largest quantity of difficulty. Thus, even if

the adversarial blockchain contains as many 𝜇-blocks as the honest

one, their accumulated mining difficulty cannot exceed the honest

one, preventing accordingly low-difficulty attacks. By Lemma 6.3,

Π is accepted, which completes the case of the proof.

𝜇 = ⊥: In this case, the proofs Π and Π′ do not share an LCA

block. By Algorithm 2, the verifier searches for the annotated blocks

𝑏 and 𝑏′ in Π and Π′, respectively. By construction, blocks 𝑏 and 𝑏′

are recent blocks (they belong to subchains 𝑋 Ω of Π and 𝑋 ′ Ω′ of
Π′, respectively) and have been mined at approximately the same

time. They can therefore be used as a temporal anchor from which

the accumulated difficulty of subsequent blocks can be checked

exactly as in the Bitcoin protocol (i.e., by checking the legitimacy of

each block after both 𝑏 and 𝑏′). If both 𝑏 and 𝑏′ are less than 𝐾 deep

from the tips of Π and Π′, respectively, then the verifier observes

the system and waits until 𝑏 or 𝑏′ are followed by 𝐾 blocks (i.e.,

| (D 𝑋 Ω){𝑏 : }| = 𝐾 ∨ |(D′ 𝑋 ′ Ω′){𝑏′ : }| = 𝐾). Once this condition
is verified, the verifier accepts the NIPoPoW returned by function

highdiff fed with the chains of blocks that respectively follow 𝑏

and 𝑏′. By construction, highdiff returns the 𝐾 long subchain that

has accumulated the largest quantity of difficulty. As for the case

𝜇 = 0, the legitimacy of all these blocks can be checked. Hence, if

the adversarial prover presents an illegitimate proof (in particular

one that results from a brute-force low-difficulty attack), then the

verifier will reject it. This completes the proof of this last case. □

Our code, data, and figures are all publicly available for the

implementation of our scheme
6
and for the calculation of 𝐾7

. The

implementation of our scheme uses Bitcoin’s historical data to

generate the proofs.

7 Conclusion
We have presented a non-interactive, succinct, and secure repre-

sentation of a PoW-based blockchain that operates in a variable

difficulty setting. This proof, called NIPoPoW, satisfies both the com-

pleteness and onlineness properties. Communication, storage, and

latency costs are polylogarithmic in the size of the full blockchain.

From an operational point of view, building a NIPoPoW requires

augmenting each block header with a logarithmic number of point-

ers. As proposed by Kiayias et al. [22, 30] this can be deployed via

velvet forks.

As future work, we intend to extend the solution proposed in [15].

We are pretty confident that handling block difficulties and weight

should improve the resiliency of our solution to a 1/2-adversary.
The other challenging objective is to find succinct and secure repre-

sentations of other types of permissionless blockchains (e.g., Proof-

of-Stake [8, 14], Proof-of-Interaction [1]). Indeed, our scheme deeply

relies on the stochastic and cryptographic properties of the hash

function of the PoW. The question is whether these alternative

permissionless blockchains present similar stochastic properties.

Acknowledgments
Wewould like to thank the reviewers for their thoughtful comments

and efforts towards improving our manuscript.

Nathanaël Derousseaux-Lebert, Loïc Miller and Dorian Pacaud

have been funded by the ANR (french National Research Agency)

project BC4SSI ANR-22-CE25-0001.

6
https://github.com/loicmiller/variable-mls

7
https://github.com/nderousseaux/imt-internship

https://github.com/loicmiller/variable-mls
https://github.com/nderousseaux/imt-internship

Mining in Logarithmic Space with Variable Difficulty CCS ’25, October 13–17, 2025, Taipei, Taiwan

References
[1] Jean-Philippe Abegg, Quentin Bramas, and Thomas Noël. 2021. Blockchain

Using Proof-of-Interaction. In Proceedings of the International Conference on
Networked Systems (NETYS), Karima Echihabi and Roland Meyer (Eds.). Springer

International Publishing, Cham, 129–143.

[2] Adam Back. 2002. Hashcash - A Denial of Service Counter-Measure. (2002).

[3] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,

Andrew K. Miller, Andrew Poelstra, and Jorge Timón. 2014. Enabling Blockchain

Innovations with Pegged. https://api.semanticscholar.org/CorpusID:18659636

[4] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Para-

digm for Designing Efficient Protocols. In Proceedings of the 1st ACM Conference
on Computer and Communications Security (CCS). ACM, 62–73.

[5] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. 2020. Coda:

Decentralized Cryptocurrency at Scale. IACR Cryptol. ePrint Arch. (2020), 352.
https://eprint.iacr.org/2020/352

[6] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. 2020. Mina:

Decentralized Cryptocurrency at Scale. https://minaprotocol.com/wp-content/

uploads/technicalWhitepaper.pdf

[7] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. 2020. FlyClient:

Super-Light Clients for Cryptocurrencies. In Proceedings of the Symposium on
Security and Privacy (S&P). IEEE, 928–946.

[8] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality Gadget.

ArXiv abs/1710.09437 (2017). https://api.semanticscholar.org/CorpusID:11301538

[9] Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang. 2018.

Edrax: A Cryptocurrency with Stateless Transaction Validation. IACR Cryptol.
ePrint Arch. (2018), 968. https://eprint.iacr.org/2018/968

[10] Bitcoin Protocol documentation. 2021. https://en.bitcoin.it/wiki/Protocol_

documentation

[11] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2017. The Bitcoin Back-

bone Protocol with Chains of Variable Difficulty. In Proceedings of the Annual
International Cryptology Conference (CRYPTO). Springer, 291–323.

[12] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone

Protocol: Analysis and Applications. In Proceedings of the 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), Elisabeth Oswald and Marc Fischlin (Eds.), Vol. 9057. Springer,

281–310.

[13] Peter Gaži, Aggelos Kiayias, and Dionysis Zindros. 2019. Proof-of-Stake

Sidechains. In Proceedings of the Symposium on Security and Privacy (S&P). IEEE,
139–156.

[14] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies.

In Proceedings of the 26th Symposium on the ACM Operating Systems Principles
(SOSP) (SOSP). 51–68.

[15] Anurag Jain, Emmanuelle Anceaume, and Sujit Gujar. 2023. Extending The

Boundaries and Exploring The Limits Of Blockchain Compression. In Proceedings

of the 43th Symposium on Reliable and Distributed Systems (SRDS). IEEE, 187–197.
[16] Thaddeus Dryja Joseph Poon. 2016. The Bitcoin Lightning Network: Scalable Off-

Chain Instant Payments. https://lightning.network/lightning-network-paper.pdf

[17] Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. 2019. Compact Storage

of Superblocks for NIPoPoW Applications. In Proceedings of the 1st International
Conference onMathematical Research for Blockchain Economy (MARBLE). Springer,
77–91.

[18] Guy Katriel. 2013. Gambler’s ruin probability—A general formula. Statistics &
Probability Letters 83, 10 (2013), 2205–2210.

[19] Aggelos Kiayias, Nikos Leonardos, and Dionysis Zindros. 2021. Mining in Loga-

rithmic Space. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[20] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. 2020. A Composable

Security Treatment of the Lightning Network. In Proceedings of the 33rd Computer
Security Foundations Symposium (CSF). IEEE, 334–349.

[21] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. 2020. Non-interactive

Proofs of Proof-of-Work. In Proceedings of the Financial Cryptography and Data
Security (FC). Springer.

[22] Aggelos Kiayias, Andrianna Polydouri, and Dionysis Zindros. 2021. The velvet

path to superlight blockchain clients. In Proceedings of the 3rd ACM Conference on
Advances in Financial Technologies (AFT). Association for Computing Machinery,

205–218.

[23] Benjamin Loison. 2023. Mining in Logarithmic Space with Variable Difficulty.

In Proceedings of the 5th Conference on Blockchain Research & Applications for
Innovative Networks and Services (BRAINS).

[24] Roman Matzutt, Benedikt Kalde, Jan Pennekamp, Arthur Drichel, Martin Henze,

and Klaus Wehrle. 2021. CoinPrune: Shrinking Bitcoin’s Blockchain Retrospec-

tively. Transactions on Network and Service Management 18, 3 (2021), 3064–3078.
[25] Loïc Miller, Dorian Pacaud, Nathanael Derousseaux, Emmanuelle Anceaume, and

Romaric Ludinard. 2025. Technical Report: Mining in Logarithmic Space with

Variable Difficulty. (2025). https://cnrs.hal.science/view/index/docid/5138795

working paper or preprint.

[26] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. https:

//bitcoin.org/bitcoin.pdf

[27] Jonas Nick, Andrew Poelstra, and Gregory Sanders. 2020. Liquid: A Bitcoin

Sidechain. https://blockstream.com/assets/downloads/pdf/liquid-whitepaper.pdf

[28] A. Pinar Ozisik and Brian Neil Levine. 2017. An Explanation of Nakamoto’s

Analysis of Double-spend Attacks. CoRR abs/1701.03977 (2017). http://arxiv.org/

abs/1701.03977

[29] SNAP. 2020. Ethereum Snapshot Protocol. https://github.com/ethereum/devp2p/

blob/master/caps/snap.md

[30] Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar R.

Weippl, and William J. Knottenbelt. 2018. A Wild Velvet Fork Appears! Inclusive

Blockchain Protocol Changes in Practice - (Short Paper). In Proceedings of the
Financial Cryptography and Data Security Conference (FC). Springer.

https://api.semanticscholar.org/CorpusID:18659636
https://eprint.iacr.org/2020/352
https://minaprotocol.com/wp-content/uploads/technicalWhitepaper.pdf
https://minaprotocol.com/wp-content/uploads/technicalWhitepaper.pdf
https://api.semanticscholar.org/CorpusID:11301538
https://eprint.iacr.org/2018/968
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://lightning.network/lightning-network-paper.pdf
https://cnrs.hal.science/view/index/docid/5138795
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://blockstream.com/assets/downloads/pdf/liquid-whitepaper.pdf
http://arxiv.org/abs/1701.03977
http://arxiv.org/abs/1701.03977
https://github.com/ethereum/devp2p/blob/master/caps/snap.md
https://github.com/ethereum/devp2p/blob/master/caps/snap.md

	Abstract
	1 Introduction
	1.1 Current Challenges
	1.2 Our Contributions

	2 Related Work
	2.1 Light clients
	2.2 Non-Interactive Proofs of Proof-of-Work

	3 Model of the system
	4 Non-Interactive Proof of Proof-of-Work in a variable difficulty setting
	5 The Prover and Verifier Algorithms
	5.1 Variable mining difficulty
	5.2 Evaluating the significance of a block
	5.3 Construction of a NIPoPoW

	6 Analysis
	6.1 Preliminary definitions
	6.2 Suppression of honest difficulty
	6.3 Proofs of the succinctness, completeness, and onlineness properties
	6.4 Proof of the security property

	7 Conclusion
	Acknowledgments
	References

