
HAL Id: hal-05033998
https://hal.science/hal-05033998v1

Submitted on 14 Apr 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preuves non-interactives : la nouvelle ère des chaînes
compressées

Dorian Pacaud, Loïc Miller, Emmanuelle Anceaume, Romaric Ludinard

To cite this version:
Dorian Pacaud, Loïc Miller, Emmanuelle Anceaume, Romaric Ludinard. Preuves non-interactives : la
nouvelle ère des chaînes compressées. 27ème Rencontre Francophone sur les Aspects Algorithmiques
des Télécommunications (Algotel-Cores25), Jun 2025, Saint Valery-sur-Somme, France. �hal-05033998�

https://hal.science/hal-05033998v1
https://hal.archives-ouvertes.fr

Preuves non-interactives : la nouvelle ère des
chaînes compressées

Dorian Pacaud1 et Loïc Miller1 et Emmanuelle Anceaume2 et Romaric
Ludinard1

1IMT Atlantique / IRISA 2CNRS / IRISA

Un des défis majeurs de la blockchain réside dans la gestion de la complexité liée à la communication et au stockage.
Pour garantir la sécurité de la blockchain, il est nécessaire de conserver intégralement les données de consensus, dont
la taille augmente linéairement avec la taille de la chaîne, ce qui compromet la pérennité de la blockchain. Les Preuves
Non-Interactives de Preuve de Travail (NIPoPoWs) apportent une solution à ce problème, à condition que le système
conserve un nombre constant de participants. Nous proposons pour la première fois une construction qui répond rigou-
reusement aux exigences d’une NIPoPoW, capable de résister à un adversaire contrôlant jusqu’à un tiers des ressources
dans un environnement dynamique. Nous montrons la concision, la sécurité et l’actualisabilité de ce système, tandis
que nos résultats expérimentaux confirment une réduction exponentielle de la taille de la blockchain Bitcoin.

Mots-clefs : blockchain, preuve de travail, compression, difficulté variable

1 Introduction
In its current form, blockchain technology does not scale. One aspect of scalability difficulty comes from

the data required to be stored and sent over the network when nodes need to synchronize with each other.
Blockchains maintain two types of data: the application data and the consensus data, both included in each
block. The first one includes everything that is part of the block data itself, such as transactions or account
balances. Consensus data includes the cryptographic fingerprints, the nonce, and the block mining difficulty.
In this work, we focus on Proof-of-Work (PoW) chains [Nak08] and consensus data. Consensus data grows
linearly over time, hindering the long-term feasibility and thus adoption of blockchain technology. While
there exist several works that permit the compression of application data [SNA20, PD16], they are not
applicable for the consensus data. To address the scalability issue of consensus data, a new construction
named NIPoPoW for Non-Interactive Proof of Proof-of-Work has been recently proposed [KLZ21, JAG23].
Based on the probabilistic properties of the hash function and the definition of block levels, this construction
enables the sampling of well-chosen blocks to create a compressed chain with a polylogarithmic length
relative to the entire chain. An honest prover can then securely help a new node to bootstrap by sending
only this polylogarithmic sample. However, this construction is proven secure under the assumption that all
blocks have been mined with the same mining difficulty.

Based on this construction, we propose a NIPoPoW compliant with variable difficulty [MPD+24]. Our
construction compresses a PoW blockchain to a polylogarithmic number of blocks. This compressed proof
is sufficient for miners to mine new blocks and for bootstrapping parties to synchronize in a non interactive
way. We prove correctness of our construction against a Byzantine adversary owning at any time strictly
less than 1/3 of the system’s computational power. We illustrate the performance of our construction by
compressing the Bitcoin blockchain.

2 Model of the system and properties
We consider PoW blockchains and make the assumption that each block contains a snapshot of the

application state. We adopt a synchronous setting with discrete rounds during which each party can send

D. Pacaud, L. Miller, E. Anceaume, R. Ludinard

and receive messages from other parties, and execute computational steps based on the received messages.
We suppose the presence of an adversary who is limited to a probabilistic polynomial-time Turing machine
that behaves arbitrarily. The adversary may not follow the protocol, but has bounded computational power,
i.e., at any time the adversary owns less than 1/3 of the total hashing power. This is a 1/3-bounded PPT
adversary. Any party following the prescribed protocol is called an honest party.

The NIPoPoW primitive we propose consists of two operations: Given a chain �, �><?A4BB(�) pro-
duces a proof Π, and �><?0A4(�1, . . . , �=) outputs the proof �8 which has accumulated the most work
from �1, . . . , �=. Let |� | be the length of the chain � (that is, the number of blocks in �) and � · 1 (resp.
Π · 1) be the chain � (resp. Π) to which is appended a valid block 1. The correctness of the NIPoPoW
primitive in the presence of a 1/3-bounded PPT adversary must guarantee the following properties.

Theorem 2.1 (Security) For any set of proofs Π1, . . . ,Π= such that among them at least one has been
provided by an honest party, �><?0A4(Π1, . . . ,Π=) returns Π8 , representative of the honest blockchain
that has accumulated the most work.

Theorem 2.2 (Succinctness) For any blockchain� of an honest party, |�><?A4BB(�) | = $ (?>;H;>6 |� |).

Theorem 2.3 (Onlineness) For any blockchain� of an honest party,�><?A4BB(�·1) = �><?A4BB(Π·1),

Proposition 2.3 states that if a party knows only the proof Π of an underlying chain �, this party can mine
directly on top of Π. It ensures scalability as parties no longer need to store the underlying chain.

3 NIPoPoW in a variable setting
The number of participants in the system is not constant, so miners have to recalculate the mining target

such that the inter-block delay remains reasonable. A long inter-block delay reduces transaction through-
put, whereas a short inter-block delay will hurt liveness because of the increased number of forks. The
recalculation of the mining target occurs at the end of each epoch, i.e., every 2016 blocks for Bitcoin.

Definition 1 (Block mining difficulty) For any valid block 1, i.e., such that ℎ(1) <) where ℎ is the hash
function and) the current mining target of 1, the mining difficulty of block 1 is 1

)
.

The intuition of our construction is based on the definition of block level introduced by Kiayias et
al. [KLZ21]. At epoch 8, when a miner finds a nonce such that ℎ(1) <)8 where)8 is the mining tar-
get of epoch 8, the nonce could also by chance verify ℎ(1) <)8/2ℓ for some integer ℓ.

Definition 2 (Level of a block) Let C be a blockchain, and block 1 ∈ C such that 1 was mined during
epoch 8. We say that the level of block 1 is equal to ℓ if it verifies

h(1)
)8

≤ 1
2ℓ

We say that a block of level ℓ is an ℓ-block. Note that by definition, a ℓ-block is also a ℓ′-block for all
0 ≤ ℓ′ < ℓ. The probability that a valid block is of level ℓ is 1/2ℓ . To obtain an ℓ-block, 2ℓ blocks must
have been mined on average around this ℓ-block.

Construction of a NIPoPoW. NIPoPoWs are composed of two operations. The �><?A4BB(�) operation
builds the NIPoPoW Π of �, while the �><?0A4(Π1, . . . ,Π=) operation returns the proof Π8 that has
accumulated the most work among Π1, . . . ,Π=. The former is executed by a prover, while the latter is
executed by a verifier. As detailed below, the �><?A4BB(�) operation sub-samples blocks, which in a
variable difficulty setting, prevents block difficulties from being verified. Therefore this paves the way
to adversarial strategies, in particular, to low-difficulty attacks. A low-difficulty attack consists for an
adversarial prover in secretly mining a blockchain whose “old blocks” have difficulties much lower than
old honest blocks (their mining is therefore very fast, which allows the prover to illegitimately get high level
blocks), and recent blocks have a difficulty similar to current honest blocks (to guarantee that the suffix of
the adversarial proof will appear legitimate compared to an honest proof).

Preuves non-interactives : la nouvelle ère des chaînes compressées

Compression. The�><?A4BB() algorithm samples a logarithmic number of well-chosen blocks from the
chain. Specifically, the algorithm first computes the maximum level ℓ of the blockchain, i.e., the maximum
level at which the blockchain contains at least 2 blocks of level ℓ, with the security sampling parameter.
Next, the algorithm keeps the 2 last blocks of each level ` below ℓ down to level 0. The algorithm also
keeps all the `-blocks after the Cℎ block of level ` + 1. The -th most recent ` + 1-block 1`C is called
the `-pivot block of C. The NIPoPoW Π will therefore be composed of all the most recent blocks of the
blockchain and of very few "old" blocks. Our construction requires that each block header keep pointers to
the last preceding block of every level to ensure that a NIPoPoW also forms a chain, i.e., a totally ordered
sequence of blocks. Each block header contains no more than log |C| pointers (see Figure 1).

Comparison. When a newcomer or a not fully synchronized entity E wishes to synchronize with the most
recent and honestly computed NIPoPoW, E first sends a (H=2 request with a private random number a of
its choice. Each miner D, upon receiving (H=2 requests, inserts all private random numbers the miner has
not already inserted into the block 1 under creation. Once created, D broadcasts 1, appends 1 to D’s local
NIPoPoW Π, compresses Π · 1 to get an up-to-date NIPoPoW Π′, and broadcasts Π′. Newcomer E will
accept NIPoPoW Π′ only if Π′ contains E’s own random number. Such a NIPoPoW is called legitimate,
and the block that contains E’s random number is called E’s legitimate block. After receiving legitimate
NIPoPoWs Π1, . . . ,Π=, E executes �><?0A4(Π1, . . . ,Π=) operation to get the most recent and honest
NIPoPoW among Π1, . . . ,Π=. Note that we assume that among all the legitimate received NIPoPoWs, at
least one has been created by a honest prover. Specifically, the �><?0A4() operation compares legitimate
NIPoPoWs Π8 and Π 9 pairwise and iteratively, keeping the best NIPoPoW after each pairwise comparison.
To compare Π8 and Π 9 , the algorithm first determines the smallest level ` at which both Π8 and Π 9 share
a common block 1. We call 1 the Last Common Ancestor (LCA). In the case where there exists an LCA,
it means that both underlying chains of Π8 and Π 9 are close in number of blocks. By construction, either
Π8 or Π 9 has at least `-blocks after the LCA block 1. Thus, the algorithm simply keeps the NIPoPoW
that has accumulated the most work in its sampled `-blocks, defending against low difficulty attacks. The
security proof shows that this is sufficient to obtain the best honest NIPoPoW. This comes from the fact
that the adversary cannot produce blocks worth of difficulty faster than the honest parties. On the other
hand, the absence of LCA between Π8 and Π 9 characterizes a length difference between both underlying
blockchains, which may be representative of a brute force low-difficulty attack, in which all the blocks of
the adversarial blockhain have been mined with a low difficulty. To detect such an attack, newcomer E waits
for the blocks 181 . . . 18 that are appended to E’s legitimate block 18 of Π8 (resp. the blocks 1 91 . . . 1 9
that are appended to E’s legitimate block 1 9 of Π 9). If E receives 181 . . . 18 before 1 91 . . . 1 9 , then Π8 is
taken for the best NIPoPoW between Π8 and Π 9 , and Π 9 otherwise.

4 Analysis and results
Relying on Garay et al.’s model [GKL17], we prove that our solution satisfies Theorems 2.1, 2.2 and 2.3.

Let � (resp. �′) be a honest (resp. adversarial) PoW-blockchain.
For any ` ∈ N, we denote by �� (`) (resp. ��(`)) the accumulated difficulty of all `-blocks in subchain

� \ (� ∩ �′) (resp. �′ \ (� ∩ �′)).

Proposition 1 (`-block common prefix) For any ` ∈ N, there exists a certain quantity �`
�

on subchain
�′ \ (� ∩ �′) such that if ��(`) ≥ �

`

�
, then with any high probability, blockchain � has accumulated

more difficulty than �′ at level ` i.e. �� (`) > ��(`).

The quantity �`
�

decays exponentially with ` [MPD+24].

Dimensioning the security parameter . We model our protocol as a competition between the honest
party and an adversary [Kat13, OL17]. We study the evolution of both chains from the forking block and
calculate the probability ? � that ��(0) > �� (0) after the adversary has provided � blocks and ? � the
probability that ��(0) > �� (0) after the honest party has provided � blocks. For ? = <0G(? � , ? �) <
n , where n = 10−6, we obtain = <0G(�, �) = 208. It means that when any party has mined blocks
after the forking block, then �� (0) > ��(0) with probability 1 − n .

D. Pacaud, L. Miller, E. Anceaume, R. Ludinard

Security. Selecting the heaviest NIPoPoW needs to consider three cases. First, if the two NIPoPoWs do
not share an LCA, the verifier uses the block that includes his private random number as a beacon and waits
for blocks to be appended. By the dimensioning of , the verifier chooses the honest NIPoPoW. Second,
if there exists an LCA between both NIPoPoWs and the LCA is at level ` = 0, then the classic common
prefix property is applied. Finally, if there exists an LCA between both NIPoPoWs and the LCA is at level
` > 0, then the honest NIPoPoW is selected. Indeed, by combining Proposition 1 with the dimensioning of
 and the fact that �`

�
decays exponentially with `, we obtain with high probability that �� (`) > ��(`).

Succinctness. For any blockchain C, |� |/2ℓ blocks are ℓ-blocks on average, with ℓ = 0, . . . , log |C|.
There are therefore approximately log(|� |) different levels. By construction, half of ℓ-blocks are also
(ℓ + 1)-blocks, thus there are strictly less than 4 blocks after the ℓ-pivot block 1ℓC for each level ℓ, ℓ =

0, . . . , log |C|. Hence approximately 2 ℓ-blocks are sampled for each level ℓ (never less than 2 and
always strictly less than 4). Consequently, a NIPoPoW contains $ (2 . log(|� |)) blocks. In addition,
each ℓ-block 1, ℓ = 0, . . . , log |C|, points to no more than log(|� |) blocks (each one being the last `-block
that precedes 1, with ` = 0, . . . , log |C|. This gives |�><?A4BB(�) | = $ (?>;H;>6 |� |).

Onlineness. The �><?A4BB() operation applied on a chain � samples the 2 most recent ℓ-blocks, with
ℓ = 0, . . . , log |� |. The operation determines for each level a a pivot block 1a

�
which is the Cℎ most recent

block of C. Since the most recent blocks are the same for both C.1 and Π.1, we have 1a
� ·1 = 1a

Π ·1. In
addition, all the blocks in Π · 1 are included in C · 1, thus �><?A4BB(� · 1) = �><?A4BB(Π · 1).

We experimentally show (see Figure 2) that when |� | → ∞, 2 log(|� |) ≤ #�%>%>, (|� |) ≤ 3 log(|� |),
where #�%>%>, (|� |) represents the number of ℓ-blocks of the NIPoPoW, with ℓ = 0, . . . , log |C|.

Uncompressed sub-chain

(A) Bitcoin before compression.

0
1
2
3
4
5
6
7
8
9

(B) The height of a block represents its level (infinite for the genesis
block), and arrows represent its inter-link data structure.

0
1
2
3
4
5
6
7
8
9

G 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

(C) The first 38 blocks of Bitcoin after compression.

FIGURE 1: Compression scheme on the first 38 blocks of
Bitcoin (= 2, j = 9 and : = 2).

0 (
20

09
-01

)

20
00

00
 (2

01
2-0

9)

40
00

00
 (2

01
6-0

2)

60
00

00
 (2

01
9-1

0)

80
00

00
 (2

02
3-0

7)

Block height (date)

0

2000

4000

6000

8000

NI
Po

Po
W

 si
ze

2 K log(h)
3 K log(h)

FIGURE 2: Evolution of the number of blocks kept
in the proof over the Bitcoin blockchain length (=

208, j = 4032 and : = 323).

5 Conclusion
In this work, we have proposed an instantiation of a NIPoPoW capable of handling variable mining

difficulty. This improves upon previous existing instantiations [KLZ21, JAG23]. The proposed solution
is resilient against a 1/3-adversary and, in particular, against low-difficulty attacks. Such an attack takes
advantage of both variable difficulties and sampling. The adversary strategically mines their “old” blocks
with a low-difficulty, making them numerous, and its “recent” ones with difficulties similar to the honest
used ones, to hide their attack. As future works, we intend to propose a construction that is tolerant to a
1/2-adversary. This would make it fully compliant with existing PoW-based blockchains. We also intend
to study their instantiation to DAG-based PoW-based blockchains.

References
[GKL17] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains

of variable difficulty. In Annual International Cryptology Conference, pages 291–323. Springer,

Preuves non-interactives : la nouvelle ère des chaînes compressées

2017.

[JAG23] Anurag Jain, Emmanuelle Anceaume, and Sujit Gujar. Extending the boundaries and exploring
the limits of blockchain compression. In IEEE 43th Symposium on Reliable and Distributed
Systems, SRDS, 2023.

[Kat13] Guy Katriel. Gamblers ruin probability—A general formula. Statistics & Probability Letters,
83(10):2205–2210, 2013.

[KLZ21] Aggelos Kiayias, Nikos Leonardos, and Dionysis Zindros. Mining in logarithmic space. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
CCS, pages 3487–3501, 2021.

[MPD+24] Loïc Miller, Dorian Pacaud, Nathanael Derousseaux, Emmanuelle Anceaume, and Romaric
Ludinard. Mining in Logarithmic Space with Variable Difficulty. working paper or preprint,
November 2024.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[OL17] A Pinar Ozisik and Brian Neil Levine. An explanation of nakamoto’s analysis of double-spend
attacks. arXiv preprint arXiv:1701.03977, 2017.

[PD16] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain instant payments, 2016.

[SNA20] SNAP. Ethereum snapshot protocol, 2020.

	Introduction
	Model of the system and properties
	NIPoPoW in a variable setting
	Analysis and results
	Conclusion

