
Policy Verification Using Metagraphs

Loïc Miller, Pascal Mérindol, Antoine Gallais and Cristel Pelsser
November 7, 2021

University of Strasbourg, France



Attacks enabled by an erroneous policy

• Razer (2017) [razer].
• Improper permissions allowing public viewing of
.bash_history, eventually leaking database credentials.

• Facebook (2018) [facebook].
• Improper policy allowing third-party applications to
become admin of a page and remove the actual owner
permanently.

1/12



Motivation

Access Control is an essential building block of security.
Generally managed by a policy administrator.

Policy
specification

Policy
implementation

Refinement

Translating a policy specification to its implementation is
prone to errors, even with the available semi-automatic or
automatic tools [awstool, dohndorf2011tool,
klinbua2017translating].

2/12



Objective: Policy verification

• Verify the implementation matches the
specification

• Pinpoint errors

2/12



Why metagraphs?

• Existing works dealing with policy verification use SAT
solvers [bera2010policy], decision
diagrams [gouda2007structured] or
graphs [ranathunga2016malachite].

SAT solvers Decision diagrams Graphs Metagraphs

Natural policy modeling ■ ◪ ◪ ■
Visual representation □ ◪ ■ ■
Formal foundations ■ ■ ◪ ■

• Properties specific to metagraphs for detecting conflicts
and redundancies1.

1ranathunga2020verifiable.

3/12



The metagraph: a collection of directed set-to-set mappings2

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

tenure > 2

tenure > 5

Employees (u1, u2) and tasks (create_form, fill_form,
review_form, transfer_money) are put into relation by the
edges (e1, e2, e3) between sets of elements.

2basu2007metagraphs.

4/12



Policy verification procedure3

Policy
specification

Policy
implementation

Specification
metagraph

Implementation
metagraphEquality?

Refinement

Random spec
generator

Conflict/Redundancy
checking

Policy
design

1

2

3

4

5

2
3
4
5

1 RandomWorkflowSpecGenerator
YawlToMetagraph / TriplesToMetagraph

RegoToMetagraph
SpecImplEquivalence

Tools

SpecToRego

Policy specification: YAWL, or metagraph-like format.
Policy implementation: Rego.

We can pinpoint errors in the policy.
3Data, code, and results publicly available. See https://zenodo.org/record/4912289.

5/12



Performance analysis 5

Policy
specification

Policy
implementation

Specification
metagraph

Implementation
metagraphEquality?

Refinement

Random spec
generator

Conflict/Redundancy
checking

Policy
design

1

2

3

4

5

6/12



Performance analysis 5

We measure the time required to compare two metagraphs.

• Random policies to get more robust results.
• Number of elements in the policy: 10, 20, 30, 50 or 100.
• Policy size: 2 or 4 propositions per edge.

→ 300 policy specifications (5× 2× 30)

• Translation error rate: 0.0, 0.2 and 0.4.
→ 27,000 policy implementations (300× 3× 30)

• 30 measures per implementation.
→ 810,000 measures (27000× 30)

Rego policy files between 305 and 24729 lines of code, in line
with observed policies.

6/12



Time increases with number of elements and policy size

0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
0

5

10

15

20

25

30

35

Al
go

 d
ur

at
io

n 
(m

s)

2-policy 4-policy 2-policy 4-policy 2-policy 4-policy 2-policy 4-policy 2-policy 4-policy

10-set 20-set 30-set 50-set 100-set

• Verification times between 0 and 12 ms on average.
• Error rate has a negligible effect (correlation of 0.01).

7/12



Conclusion

• New policy verification method using metagraphs.

• Motivated the use of metagraphs to represent and verify
policies.

• Developed suite of tools4:
• RandomPolicySpecGenerator
• YawlToMetagraph / SpecToRego
• RegoToMetagraph
• SpecImplEquivalence

• Evaluated our method: verification times between 0 and
12 ms on average.

4Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12



Conclusion

• New policy verification method using metagraphs.
• Motivated the use of metagraphs to represent and verify
policies.

• Developed suite of tools4:
• RandomPolicySpecGenerator
• YawlToMetagraph / SpecToRego
• RegoToMetagraph
• SpecImplEquivalence

• Evaluated our method: verification times between 0 and
12 ms on average.

4Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12



Conclusion

• New policy verification method using metagraphs.
• Motivated the use of metagraphs to represent and verify
policies.

• Developed suite of tools4:
• RandomPolicySpecGenerator
• YawlToMetagraph / SpecToRego
• RegoToMetagraph
• SpecImplEquivalence

• Evaluated our method: verification times between 0 and
12 ms on average.

4Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12



Conclusion

• New policy verification method using metagraphs.
• Motivated the use of metagraphs to represent and verify
policies.

• Developed suite of tools4:
• RandomPolicySpecGenerator
• YawlToMetagraph / SpecToRego
• RegoToMetagraph
• SpecImplEquivalence

• Evaluated our method: verification times between 0 and
12 ms on average.

4Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12



Current Works: Metagraphs for Policy Analysis

Goal: Identify redundancies/conflicts/incompleteness in the
policy.

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

tenure > 2

tenure > 5

M1({u1,u2}, {transfer_money}) = {e1, e2, e3} is not a simple
path, its a metapath.

9/12



Input dominance

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

e1'

bypass
e4

e2' e5

tenure > 2

tenure > 2 &
user_is_employee

M1({u1,u2}, {transfer_money}) = {e′1, e′2, e3} is not
input-dominant because
M2({u1}, {transfer_money}) = {e1, e2, e3} is a metapath.

10/12



Edge dominance

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

e1'

bypass
e4

e2' e5

tenure > 2

tenure > 2 &
user_is_employee

M1({u1}, {transfer_money}) = {e1, e2, e3, e4, e5} is not
edge-dominant because
M2({u1}, {transfer_money}) = {e1, e2, e3} is a metapath.

11/12



Usage of dominant metapaths

• Dominant metapaths identify necessary elements.
• Elements not on any dominant metapath are redundant.

• Computationally expensive solution (A∗).

12/12



Thank you!

12/12




	Appendix

