Policy Verification Using Metagraphs

Loic Miller, Pascal Mérindol, Antoine Gallais and Cristel Pelsser
November 7, 2021

University of Strasbourg, France

Université iC‘J BE

H ’ de Strasbourg

Attacks enabled by an erroneous policy

- Razer (2017) [razer].
- Improper permissions allowing public viewing of
.bash_history, eventually leaking database credentials.
- Facebook (2018) [facebook].
- Improper policy allowing third-party applications to
become admin of a page and remove the actual owner
permanently.

1/12

Access Control is an essential building block of security.
Generally managed by a policy administrator.

Policy | Refinement | pojicy
specification '\ implementation

Translating a policy specification to its implementation is
prone to errors, even with the available semi-automatic or
automatic tools [awstool, dohndorf2011tool,
klinbua2017translating].

2/12

Objective: Policy verification

Verify the implementation matches the
specification

Pinpoint errors

Why metagraphs?

- Existing works dealing with policy verification use SAT
solvers [bera2010policy], decision
diagrams [gouda2007structured] or
graphs [ranathunga2016malachite].

SAT solvers Decision diagrams Graphs Metagraphs

Natural policy modeling [| d 4 [|
Visual representation O 4 [| [|
Formal foundations [| [| 4 [|

- Properties specific to metagraphs for detecting conflicts
and EEd ndanc'es1
Tranathunga2020verifiable.

3/12

The metagraph: a collection of directed set-to-set mappings?

tenure > 2 create_form

€4

transfer_money

e
tenure > 5 3
€7

Employees (us, Up) and tasks (create_form, fill_form,
review_form, transfer_money) are put into relation by the
edges (eq, e;, e3) between sets of elements.

“basu2007metagraphs.

4/12

Policy verification procedure?

Random spec

Policy
design

>

generator
20
Policy | Refinement [pgjicy Tools
specification implementation (@ RandomWorkflowSpecGenerator

@ 2 YawlToMetagraph / TriplesToMetagraph
@ SpecToRego
Specification Equalit ,)_)Implementation @ RegoToMetagraph
metagraph q@ ¥ metagraph (B SpeclmplEquivalence

Policy specification: YAWL, or metagraph-like format.
Policy implementation: Rego.

We can pinpoint errors in the policy.
3Data, code, and results publicly available. See https://zenodo.org/record/4912289.

5/12

Performance analysis @

. /
v v

4 arm q .
. Specification Equality?-> Implementation
metagraph ® metagraph

6/12

Performance analysis @

We measure the time required to compare two metagraphs.

- Random policies to get more robust results.
- Number of elements in the policy: 10, 20, 30, 50 or 100.

- Policy size: 2 or 4 propositions per edge.
— 300 policy specifications (5 x 2 x 30)

- Translation error rate: 0.0, 0.2 and 0.4.
— 27,000 policy implementations (300 x 3 x 30)

- 30 measures per implementation.
— 810,000 measures (27000 x 30)

Rego policy files between 305 and 24729 lines of code, in line
with observed policies.

6/12

Time increases with number of elements and policy size

N W W
o o O

= N
o O

Algo duration (ms)

S

00‘02‘04 00‘02 04

B ofn e

00‘02‘04 00 02 04 00 02 04 00 02‘04 00‘02‘04 00‘02‘04 00‘02‘04 00‘02‘04

2-policy | 4-policy | 2-policy | 4-policy | 2-policy | 4-policy | 2-policy

10-set 20-set 30-set 50-set 100-set

4-policy | 2-policy | 4-policy

- Verification times between 0 and 12 ms on average.
- Error rate has a negligible effect (correlation of 0.01).

7112

Conclusion

- New policy verification method using metagraphs.

“Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12

Conclusion

- New policy verification method using metagraphs.

- Motivated the use of metagraphs to represent and verify
policies.

“Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12

Conclusion

- New policy verification method using metagraphs.

- Motivated the use of metagraphs to represent and verify
policies.
- Developed suite of tools*:

- RandomPolicySpecGenerator

- YawlToMetagraph / SpecToRego
- RegoToMetagraph

- SpecimplEquivalence

“Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12

Conclusion

- New policy verification method using metagraphs.

- Motivated the use of metagraphs to represent and verify
policies.
- Developed suite of tools*:
- RandomPolicySpecGenerator
- YawlToMetagraph / SpecToRego
- RegoToMetagraph
- SpecimplEquivalence
- Evaluated our method: verification times between 0 and
12 ms on average.

“Code, data and guidance at https://github.com/loicmiller/policy-verification

8/12

Current Works: Metagraphs for Policy Analysis

Goal: Identify redundancies/conflicts/incompleteness in the

policy.

tenure > 2
€1
tenure > 5

€2

M1({un, Uy}, {transfer_money}) = {e4, e,,e3} is not a simple
path, its a metapath.

transfer_money

€3

9/12

Input dominance

tenure > 2
eq create_form

_______ eq heeema-
user_is_employee es

My ({u1, uz}, {transfer_money}) = {€}, €}, es} is not
input-dominant because
is a metapath.

10/12

Edge dominance

tenure > 2
eq create_form
e

user_is_employee es 5

eo review_form
ad e
) < .°5
""""""""

M1({ur}, {transfer_money}) = {es, e;, €3, €4, es5} is not
edge-dominant because

is a metapath.

1n/12

Usage of dominant metapaths

- Dominant metapaths identify necessary elements.

- Elements not on any dominant metapath are redundant.

- Computationally expensive solution (A*).

12/12

Thank you!

	Appendix

