Securing Workflows

On the Use of Microservices and Metagraphs to Prevent Data Exposures

Loïc Miller
April 22, 2022

University of Strasbourg, France

Supervisors:

	Pascal Mérindol Antoine Gallais Jury: Cristel	Pelsser
	Gregory	Blanc
	Etienne	Rivière
Géraldine	Texier	
Sébastien	Tixeuil	

Jury:

	Pascal Antoine Jury:	Mérindol Gallais
	Gelsser	
Gtienory	Blanc	
Géraldine	Rivière	Texier
	Sébastien	Tixeuil

Gregory Blanc
Etienne Rivière
Géraldine Texier
Sébastien Tixeuil

Businesses and operations

Workflows are used everywhere and by everyone.

Supply chain, customer orders, ticketing systems, etc.

Businesses and operations - Sometimes convoluted

They can be complex.

Businesses and operations - Sometimes straightforward

Workflows

- Sequence of tasks processing a set of data.

Workflows

- Sequence of tasks processing a set of data.
- They involve other organizations, resulting in multi-party workflows.

Workflows

- Sequence of tasks processing a set of data.
- They involve other organizations, resulting in multi-party workflows.
- Complications in terms of communication and security.

Workflows

- Sequence of tasks processing a set of data.
- They involve other organizations, resulting in multi-party workflows.
- Complications in terms of communication and security.

In the movie industry, data is often stored unencrypted in the cloud.

Data exposures

Sensitive data is accessed by an unauthorized party.

Breach

Leak

Data breaches

Exploit flaws in the security of the system.

Breach

[^0]
Data breaches

Exploit flaws in the security of the system.

- At rest ${ }^{1}$ or in transport.

Breach

[^1]
Data breaches

Exploit flaws in the security of the system.

- At rest ${ }^{1}$ or in transport.
- 2013 Yahoo data theft.

Breach

[^2]
Data breaches

Exploit flaws in the security of the system.

- At rest ${ }^{1}$ or in transport.
- 2013 Yahoo data theft.
- 88% of cloud breaches due to
 human error.

Breach

[^3]
Data leaks

Leak due to processing.

[^4]
Data leaks

Leak due to processing.

- Mistake ${ }^{2}$ or malicious.

[^5]
Data leaks

Leak due to processing.

- Mistake ${ }^{2}$ or malicious.
- 2019 First American Corp. leak.

Leak

[^6]
Exposures are trending up ${ }^{3}$

${ }^{3}$ Risk Based Security. Data Breach Quickview 2020 Year End Report. 2021

Exposures are trending up ${ }^{3}$

Record $=$ collection of related fields.
${ }^{3}$ Risk Based Security. Data Breach Quickview 2020 Year End Report. 2021

Exposures are trending up ${ }^{3}$

82% of compromised records from five leaks.
${ }^{3}$ Risk Based Security. Data Breach Quickview 2020 Year End Report. 2021

Overview

1. Workflows are used everywhere and by everyone.

Overview

1. Workflows are used everywhere and by everyone.
2. Exposures are widespread, outcomes of critical vulnerabilities, and happening more.

Overview

1. Workflows are used everywhere and by everyone.
2. Exposures are widespread, outcomes of critical vulnerabilities, and happening more.
3. The shift to the cloud has brought new security risks.

Research statement

Enforce secure multi-party workflows and prevent data exposures

Research questions

- RQ1: How can we use microservices to enable multi-party workflow?

Research questions

- RQ1: How can we use microservices to enable multi-party workflow?
- RQ2: How do we verify a policy specification corresponds to its implementation?

Research questions

- RQ1: How can we use microservices to enable multi-party workflow?
- RQ2: How do we verify a policy specification corresponds to its implementation?
- RQ3: How do we verify a policy specification contains no redundancies?

A Secure Infrastructure to Prevent Data Exposures

Workflows

- Workflow is a sequence of tasks processed by a set of actors.
- Owner of the data interacts with contractors to realize task.
- Actors have agents: employee or automated service.

Objectives

How can we enforce workflows and prevent data exposures?

Achieved properties

- Data security at rest: stored encrypted,

Achieved properties

- Data security at rest: stored encrypted, access restricted by isolation and policy.

Achieved properties

- Data security at rest: stored encrypted, access restricted by isolation and policy.
- Data security in transport: exchanged encrypted, with integrity and authentication checks.

Achieved properties

- Data security at rest: stored encrypted, access restricted by isolation and policy.
- Data security in transport: exchanged encrypted, with integrity and authentication checks.

The data cannot be leaked in both cases.

Building block security properties

Service
service

Isolation

Encrypted storage, encrypted communications, policy enforcement.

Building block security properties

Encrypted storage, encrypted communications, policy enforcement.

Building block security properties

Service	Orchestrator	Service mesh
service	pod	pod
service		

Encrypted storage, encrypted communications, policy enforcement.

Building block security properties

Service	Orchestrator	Service mesh	Policy engine
	pod	pod	pod
	service	service	service
service		proxy	proxy
		-	policy
Isolation	Isolation	Identity \& Authentication	Authorization
	Encryption (at rest)	Encryption (mTLS)	
?	? ?	?	?

Encrypted storage, encrypted communications, policy enforcement.

Proof of Concept deployed on Google Cloud Platform

Post-production movie workflow.

- One Kubernetes cluster per actor.
- One n1-standard-v2 per cluster ($2 \mathrm{vCPUs}, 7.5 \mathrm{~GB}$ of memory), except the owner which has two.

Evaluating security overhead

Pod startup time and Request duration.

Effect of policy engine on pod startup time

- Independent-samples t-test
- Two deployments: one with policy engine and one without.
- 130 observations per pod ($N=1820$).

Figure 1: Startup time distribution

Time increased by 2 seconds on average (32.72\%).

Effect of policy size on request duration

We analyze intra-region and inter-region communications.

- $+5-10 \mathrm{~ms}$ on average.
- Low impact inter-region.

Conclusion: 1st axis

- Infrastructure to secure communications in a workflow.

Conclusion: 1st axis

- Infrastructure to secure communications in a workflow.
- Proof of concept: Code, data and guidance available.

Conclusion: 1st axis

- Infrastructure to secure communications in a workflow.
- Proof of concept: Code, data and guidance available.
- We verified communications and security.

Conclusion: 1st axis

- Infrastructure to secure communications in a workflow.
- Proof of concept: Code, data and guidance available.
- We verified communications and security.
- Performance analysis: Acceptable tradeoff.

Assumption used so far

The policy is optimal and error-free.

Assumption used so far

The policy is optimal anderror-free.

Motivation

Access Control is an essential building block of security. Generally managed by a policy administrator.

Motivation

Access Control is an essential building block of security. Generally managed by a policy administrator.

Prone to errors:

Motivation

Access Control is an essential building block of security. Generally managed by a policy administrator.

Prone to errors:

- Attackers.

Motivation

Access Control is an essential building block of security. Generally managed by a policy administrator.

Prone to errors:

- Attackers.
- Distributed deployments.

Motivation

Access Control is an essential building block of security. Generally managed by a policy administrator.

Prone to errors:

- Attackers.
- Distributed deployments.
- Refinement: Semi-automatic or automatic tools.
- Verify the implementation matches the specification
- Pinpoint errors

Why metagraphs?

- Existing works dealing with policy verification use SAT solvers [2], decision diagrams [3] or graphs [10].

	SAT solvers	Decision diagrams	Graphs	Metagraphs
Natural policy modeling	\square	\square	\square	\square
Visual representation	\square	\square	\square	\square

- Properties specific to metagraphs for detecting conflicts and redundancies ${ }^{4}$.

${ }^{4}$ Dinesha Ranathunga, Matthew Roughan, and Hung Nguyen. "Verifiable Policy-Defined Networking using Metagraphs". In: IEEE Transactions on Dependable and Secure Computing (2020).

The metagraph: a collection of directed set-to-set mappings [1]

Employees $\left(u_{1}, u_{2}\right)$ and tasks (create_form, fill_form, review_form, transfer_money) are put into relation by the edges $\left(e_{1}, e_{2}, e_{3}\right)$ between sets of elements.

Policy verification procedure

Policy verification procedure

Policy specification: YAWL, or metagraph-like format.

Policy verification procedure

Policy specification: YAWL, or metagraph-like format.
Policy implementation: Rego.

Policy verification procedure

Policy specification: YAWL, or metagraph-like format.
Policy implementation: Rego.
We can pinpoint errors in the policy.

Performance analysis (5)

Performance analysis (5)

We measure the time required to compare two metagraphs.

Performance analysis (5)

We measure the time required to compare two metagraphs.

- Random policies to get more robust results.

Performance analysis (5)

We measure the time required to compare two metagraphs.

- Random policies to get more robust results.
- Number of elements in the policy: 10, 20, 30, 50 or 100.

Performance analysis (5)

We measure the time required to compare two metagraphs.

- Random policies to get more robust results.
- Number of elements in the policy: 10, 20, 30, 50 or 100.
- Policy size: 2 or 4 propositions per edge.
$\rightarrow 300$ policy specifications $(5 \times 2 \times 30)$

Performance analysis (5)

We measure the time required to compare two metagraphs.

- Random policies to get more robust results.
- Number of elements in the policy: 10, 20, 30, 50 or 100.
- Policy size: 2 or 4 propositions per edge.
$\rightarrow 300$ policy specifications $(5 \times 2 \times 30)$
- Translation error rate: $0.0,0.2$ and 0.4 .
$\rightarrow 27,000$ policy implementations $(300 \times 3 \times 30)$

Performance analysis (5)

We measure the time required to compare two metagraphs.

- Random policies to get more robust results.
- Number of elements in the policy: 10, 20, 30, 50 or 100.
- Policy size: 2 or 4 propositions per edge.
$\rightarrow 300$ policy specifications $(5 \times 2 \times 30)$
- Translation error rate: $0.0,0.2$ and 0.4 .
$\rightarrow 27,000$ policy implementations $(300 \times 3 \times 30)$
- 30 measures per implementation.
$\rightarrow 810,000$ measures (27000×30)

Performance analysis (5)

We measure the time required to compare two metagraphs.

- Random policies to get more robust results.
- Number of elements in the policy: 10, 20, 30, 50 or 100.
- Policy size: 2 or 4 propositions per edge.
$\rightarrow 300$ policy specifications $(5 \times 2 \times 30)$
- Translation error rate: $0.0,0.2$ and 0.4 .
$\rightarrow 27,000$ policy implementations $(300 \times 3 \times 30)$
- 30 measures per implementation.
$\rightarrow 810,000$ measures (27000×30)
Rego policy files between 305 and 24729 lines of code, in line with observed policies.

Time increases with number of elements and policy size

- Verification times between 0 and 12 ms on average.
- Error rate has a negligible effect (correlation of 0.01).

Conclusion: 2nd axis

- New policy verification method using metagraphs.
${ }^{5}$ Code, data and guidance at https://github.com/loicmiller/policy-verification

Conclusion: 2nd axis

- New policy verification method using metagraphs.
- Motivated the use of metagraphs to represent and verify policies.

[^7]
Conclusion: 2nd axis

- New policy verification method using metagraphs.
- Motivated the use of metagraphs to represent and verify policies.
- Developed suite of tools ${ }^{5}$:
- RandomPolicySpecGenerator
- YawIToMetagraph / SpecToRego
- RegoToMetagraph
- SpecImplEquivalence

[^8]
Conclusion: 2nd axis

- New policy verification method using metagraphs.
- Motivated the use of metagraphs to represent and verify policies.
- Developed suite of tools ${ }^{5}$:
- RandomPolicySpecGenerator
- YawlToMetagraph / SpecToRego
- RegoToMetagraph
- SpecImpIEquivalence
- Evaluated our method: verification times between $\mathbf{0}$ and 12 ms on average.
${ }^{5}$ Code, data and guidance at https://github.com/loicmiller/policy-verification

Assumption used so far

The policy is optimal anderror-free.

Assumption used so far

The policy is optimal and error-free.

Goal: Identify redundancies in a (security) policy.

Elements which do not change the behavior of the policy if removed.

Goal: Identify redundancies in a (security) policy.

Elements which do not change the behavior of the policy if removed.

Motivation: Speed, reduce clutter, reduce errors.

Goal: Identify redundancies in a (security) policy.

Elements which do not change the behavior of the policy if removed.

Motivation: Speed, reduce clutter, reduce errors.

Metagraphs have already been used to detect redundancies [9]...

Goal: Identify redundancies in a (security) policy.

Elements which do not change the behavior of the policy if removed.

Motivation: Speed, reduce clutter, reduce errors.

Metagraphs have already been used to detect redundancies [9]... ...but the current solution has shortcomings.

Metapaths are not simple paths

$M_{1}\left(\left\{u_{1}, u_{2}\right\},\{\right.$ transfer_money $\left.\}\right)=\left\{e_{1}, e_{2}, e_{3}\right\}$ is a metapath.

Metapaths are not simple paths

$M_{1}\left(\left\{u_{1}, u_{2}\right\},\{\right.$ transfer_money $\left.\}\right)=\left\{e_{1}, e_{2}, e_{3}\right\}$ is a metapath.
A metapath is dominant if it is both input-dominant and edge-dominant.

Input dominance - Minimality of input

$M_{1}\left(\left\{u_{1}, u_{2}\right\},\{\right.$ transfer_money $\left.\}\right)=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}\right\}$ is not input-dominant because
$M_{2}\left(\left\{u_{1}\right\},\{\right.$ transfer_money $\left.\}\right)=\left\{e_{1}, e_{2}, e_{3}\right\}$ is a metapath.

Edge dominance - Minimality of edges

$M_{1}\left(\left\{u_{1}\right\},\{\right.$ transfer_money $\left.\}\right)=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ is not edge-dominant because $M_{2}\left(\left\{u_{1}\right\},\{\right.$ transfer_money $\left.\}\right)=\left\{e_{1}, e_{2}, e_{3}\right\}$ is a metapath.

Dominant metapaths identify minimal access.

Elements not on any dominant metapath are redundant.
Rationale: In every possible access, we can do without the redundancy.

Dominant metapaths identify minimal access.

Elements not on any dominant metapath are redundant.
Rationale: In every possible access, we can do without the redundancy.
"...simply check all feasible metapaths in a policy metagraph for edge and input dominance, if either fails, the policy includes redundancies" - Ranathunga et al. [9].

Dominant metapaths identify minimal access.

Elements not on any dominant metapath are redundant.
Rationale: In every possible access, we can do without the redundancy.
"...simply check all feasible metapaths in a policy metagraph for edge and input dominance, if either fails, the policy includes redundancies" - Ranathunga et al. [9].

Great! Problem solved, right?

In reality...

- Checking all metapaths takes too much time.

In reality...

- Checking all metapaths takes too much time.
- Even worse, just finding all metapaths takes too much time.

Finding all metapaths takes too much time

Algorithm is based on computing the transitive closure of A^{*}, the adjacency matrix - $\left(n^{3}\right)^{m}$.

Finding all metapaths takes too much time

Algorithm is based on computing the transitive closure of A^{*}, the adjacency matrix - $\left(n^{3}\right)^{m}$.

- Equivalent to finding all simple paths between all pairs of elements.

Finding all metapaths takes too much time

Algorithm is based on computing the transitive closure of A^{*}, the adjacency matrix - $\left(n^{3}\right)^{m}$.

- Equivalent to finding all simple paths between all pairs of elements.
- Does not find all metapaths.

Finding all metapaths takes too much time

Algorithm is based on computing the transitive closure of A^{*}, the adjacency matrix - $\left(n^{3}\right)^{m}$.

- Equivalent to finding all simple paths between all pairs of elements.
- Does not find all metapaths.
- The redundant metapaths found are not minimal.

Finding all metapaths takes too much time

Algorithm is based on computing the transitive closure of A^{*}, the adjacency matrix - $\left(n^{3}\right)^{m}$.

- Equivalent to finding all simple paths between all pairs of elements.
- Does not find all metapaths.
- The redundant metapaths found are not minimal.

Implementing their method, it took 1 hour to process metagraphs of 13 elements at most.

Alternatives?

- No simple algorithm.
- Can it be done?
- NP-Hard? Yes.

Alternatives?

- No simple algorithm.
- Can it be done?
- NP-Hard? Yes.

Redundant Hyperpath Edge Problem

Forced Hyperpath
Edge Problem

Hypergraphs, a structure related to metagraphs.

Types of hypergraphs (B, F, BF)

B-edge

F-edge

Types of hypergraphs (B, F, BF)

F-edge

Types of hypergraphs (B, F, BF)

F-hypergraph

F-edge

Types of hypergraphs (B, F, BF)

BF-hypergraph

F-edge

Hyperpaths

- Minimal sub-hypergraph \mathcal{H}^{\prime}.
- Invertex of new edge must already be in hyperpath.

Proof that finding redundancies is NP-Hard

Redundant
Hyperpath Edge
Problem

Proof that finding redundancies is NP-Hard

Redundant
Hyperpath Edge
Problem

- Find all redundant edges in \mathcal{H}.

Proof that finding redundancies is NP-Hard

Redundant
Hyperpath Edge
Problem

Forced Hyperpath
 Edge Problem

- Find all redundant edges in \mathcal{H}.
- Is there an input-dominant hyperpath in \mathcal{H} using e.

Proof that finding redundancies is NP-Hard

- Find all redundant edges in \mathcal{H}.
- Is there an input-dominant hyperpath in \mathcal{H} using e.

An input-dominant hyperpath using e means e is not redundant.

Proving the FHEP is NP-Complete with simple graphs

The Forced Path Edge Problem: simple graph version of the FHEP.

Reduction from 2-VDPP, a known NP-Hard problem.

Proving the FHEP is NP-Complete with simple graphs

Disjoint paths (2-VDPP)

Suppose we have an instance of 2-VDPP.

Proving the FHEP is NP-Complete with simple graphs

Disjoint paths (2-VDPP)
G^{\prime} construction (FPEP)

Construction G^{\prime} with added forced edge.

Proving the FHEP is NP-Complete with simple graphs

Disjoint paths (2-VDPP)
G^{\prime} construction (FPEP)

A solution to FPEP is a simple path from s_{1} to t_{2} via e^{\prime}.

Proving the FHEP is NP-Complete with simple graphs

Disjoint paths (2-VDPP)
G^{\prime} construction (FPEP)

A solution to FPEP is a solution to 2-VDPP.

Proving the FHEP is NP-Complete with simple graphs

Disjoint paths (2-VDPP)
G^{\prime} construction (FPEP)

The Forced Path Edge Problem is NP-Complete.

Proving the FHEP is NP-Complete with simple graphs

Disjoint paths (2-VDPP)
G^{\prime} construction (FPEP)

The Forced Path Edge Problem is NP-Complete.
Corollary: the FHEP is NP-Complete.

Complexity summary

Redundancy

Forced Edge Cyclic B NP-Hard [13]
F NP-Hard [13]
BF NP-Hard [13]
Acyclic B P (linear) [13]
F ?
BF ?

Complexity summary

Redundancy
Forced Edge Cyclic B NP-Hard [13]
F NP-Hard [13]
BF NP-Hard [13]
Acyclic B P (linear) [13]
F ?
BF ?

Complexity summary

Redundancy

Forced Edge Cyclic B NP-Hard [13]
F NP-Hard [13]
BF NP-Hard [13]
Acyclic B P (linear) [13]
F ?
BF ?

Complexity summary

Redundancy
Forced Edge Cyclic B NP-Hard [13]
F NP-Hard [13]
BF NP-Hard [13]
Acyclic B P (linear) [13]
F NP-Hard [8]
BF NP-Hard [8]

Acyclic F-hypergraph proof

Reduction from 3-SAT.

$$
\begin{aligned}
& \left(v_{1} \vee v_{2} \vee \neg v_{4}\right) \wedge \\
& \left(v_{1} \vee \neg v_{2} \vee \neg v_{3}\right)
\end{aligned}
$$

3-SAT instance
Our construction.

The FHEP in an acyclic F-hypergraph is NP-Complete.

Trying to get a correct result faster

- Correct result by enumeration (1 hour / 6 elements).

Trying to get a correct result faster

- Correct result by enumeration (1 hour / 6 elements).
- SAT formulation.

Trying to get a correct result faster

- Correct result by enumeration (1 hour / 6 elements).
- SAT formulation.

What aspects of metapaths can we exploit to be faster?

Trying to get a correct result faster

- Correct result by enumeration (1 hour / 6 elements).
- SAT formulation.

What aspects of metapaths can we exploit to be faster?
Dominance!

- We only need dominant metapaths to compute the solution, not all of them.
- A dominant metapath is minimal, no need to test supersets.
- Testing if a metapath is dominant is polynomial.

Using Pascal's triangle

- Build iteratively from the top.
- Only add set if not dominant.
- This guarantees we test only when necessary.

Using Pascal's triangle

- Build iteratively from the top.
- Only add set if not dominant.
- This guarantees we test only
 when necessary.

Performance results

- SAT almost instant for generated instances.
- Pascal's triangle method up to 28 edges.

Conclusion: 3rd axis

- Finding redundancies is NP-Hard.
- Roadblocks in SAT formulation.
- Efficient algorithm using Pascal's triangle.

Conclusion

- Microservices to enable leak-free multi-party workflows.

Conclusion

- Microservices to enable leak-free multi-party workflows.
- Metagraphs are a useful model for policies.

Conclusion

- Microservices to enable leak-free multi-party workflows.
- Metagraphs are a useful model for policies.
- Policy verification to check implementations.

Conclusion

- Microservices to enable leak-free multi-party workflows.
- Metagraphs are a useful model for policies.
- Policy verification to check implementations.
- Policy analysis to check specifications.

Contributions of this thesis

This thesis therefore focuses on the prevention of data exposures, in workflows in particular.

$\#$	Contribution	Tool	Repository (github.com/)
1	Secure infrastructure design [6,5]	Proof of Concept	loicmiller/secure-workflow
2	Policy verification [7,5]	Policy verification	loicmiller/policy-verification
		MGToolkit for Python 3	loicmiller/mgtoolkit
3	Policy redundancy elimination [8]	Redundancy elimination	loicmiller/policy-analysis
		SAT formulation	loicmiller/fhep-sat-formulation

All code, data, results and figures are publicly available.

- Miller et al. "Towards Secure and Leak-Free Workflows Using Microservice Isolation". In: HPSR (2021).
- Miller et al. "Verification of Cloud Security Policies". In: HPSR (2021).
- Miller et al. "Securing Workflows Using Microservices and Metagraphs". In: Electronics (2021).
- Gil Pons et al. "Finding (s,d)-Hypernetworks in F-Hypergraphs is NP-Hard". In: arXiv (2022).

Future Works

Short term goals

- Improved SAT generation (De Morgan's Law).
- Explore related complexity issues.

Midterm goals

- Explore security properties (separation of duties).
- Explore impact of workflow patterns (cancellation).

Long term goals

- Constitution of a policy benchmark dataset.
- Distributed policy (least privilege).

Distributed policy

- Split a single policy across distributed elements?
- Verify correctness? Least privilege?
- Policy composition (algebras).
- Who specifies what? Multiple languages?

Thank you!
[1] Amit Basu and Robert W Blanning. Metagraphs and their applications. Vol. 15. Springer Science \& Business Media, 2007.
[2] Padmalochan Bera, Soumya Kanti Ghosh, and Pallab Dasgupta. "Policy based security analysis in enterprise networks: A formal approach". In: IEEE Transactions on Network and Service Management 7.4 (2010), pp. 231-243.
[3] Mohamed G Gouda and Alex X Liu. "Structured firewall design". In: Computer networks 51.4 (2007), pp. 1106-1120.
[4] Brian Krebs. First American Financial Corp. Leaked Hundreds of Millions of Title Insurance Records. 2019. URL:
https://krebsonsecurity.com/2019/05/first-american-financial-corp-leaked-hundreds-of-millions-of-title-insurance-records/.
[5] Loïc Miller et al. "Securing Workflows Using Microservices and Metagraphs". In: Electronics 10.24 (2021), p. 3087.
[6] Loïc Miller et al. "Towards Secure and Leak-Free Workflows Using Microservice Isolation". In: 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR). IEEE. 2021, pp. 1-5. DOI:
10.1109/HPSR52026.2021.9481820.
[7] Loïc Miller et al. "Verification of Cloud Security Policies". In: 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR). IEEE. 2021, pp. 1-5. DOI: 10.1109/HPSR52026.2021.9481870.
[8] Reynaldo Gil Pons, Max Ward, and Loïc Miller. Finding (s,d)-Hypernetworks in F-Hypergraphs is NP-Hard. 2022. arXiv: 2201.04799 [cs.DM].
[9] Dinesha Ranathunga, Matthew Roughan, and Hung Nguyen. "Verifiable Policy-Defined Networking using Metagraphs". In: IEEE Transactions on Dependable and Secure Computing (2020).
[10] Dinesha Ranathunga et al. "Malachite: Firewall policy comparison". In: 2016 IEEE Symposium on Computers and Communication (ISCC). IEEE. 2016, pp. 310-317.
[11] Risk Based Security. Data Breach Quickview 2020 Year End Report. 2021. URL: https://pages.riskbasedsecurity.com/en/en/2020-yearend-data-breach-quickview-report.
[12] Jonathan Stempel and Jim Finkle. Yahoo says all three billion accounts hacked in 2013 data theft. 2017. URL:
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C8201.
[13] Antonio P Volpentesta. "Hypernetworks in a directed hypergraph". In: European Journal of Operational Research 188.2 (2008), pp. 390-405.

Effect of policy engine on pod startup time

- Independent-samples t-test
- Two deployments: one with policy engine and one without.
- 130 observations per pod ($N=1820$).

Figure 2: Startup time distribution

- $t(1818)=43.19, p<0.001$
- High effect size: $d=1.985$
- High statistical power:

$$
1-\beta=0.999
$$

Effect of policy size on request duration

We analyze intra-region and inter-region communications.
One-way between subjects ANOVA.
40 observations per communication per scenario ($N=1600$).
Policy scenarios: no opa, all allow, minimal ,+100 (+147\%),
$+1000(+1470 \%)$.

High (low) impact on intra (inter) region request time

Intra-region

- $F(4,795)=364.05$,

$$
p<0.001
$$

- High effect size:

$$
\eta_{p}^{2}=0.65
$$

Inter-region

- $F(4,795)=15.23$,

$$
p<0.001
$$

- Low effect size:

$$
\eta_{p}^{2}=0.07
$$

- Significant difference in request duration between the five scenarios for both types.

$(\mathcal{S}, \mathcal{D})$-hypernetwork: Sum of all hyperpaths

Finding (s,d)-Hypernetworks in F-Hypergraphs is NP-Hard

- FHEP reducible to SDHP.
- If FHEP is NP-complete, SDHP is NP-Hard.
- Reduction from 3-SAT (NP-Complete).

We take an instance of 3-SAT

$$
\left(v_{1} \vee v_{2} \vee \neg v_{4}\right) \wedge\left(v_{1} \vee \neg v_{2} \vee \neg v_{3}\right)
$$

We construct a corresponding acyclic F-hypergraph.
Any forced edge hyperpath corresponds to a solution to 3-SAT instance.

The construction

$$
\left(v_{1} \vee v_{2} \vee \neg v_{4}\right) \wedge\left(v_{1} \vee \neg v_{2} \vee \neg v_{3}\right)
$$

p_{0} is the source. f the destination.
p_{i} for each variable. $q_{i, 1}, q_{i, 2}, q_{i, 3}$ for each clause.
Edge where a variable appears in a clause.

Complexity summary for finding a hyperpath

			Edge-dom	Input-dom	Dom
Regular	Cyclic	B	P (linear)	P (linear)	P
		F	P	P	P
		BF	P	P	P
	Acyclic	B	P (linear)	P	P
		F	P	P	P
		BF	P	P	P
Forced Edge	Cyclic	B	NP-Hard [13]	?	NP-Hard [13]
		F	NP-Hard [13]	?	NP-Hard [13]
		BF	NP-Hard [13]	?	NP-Hard [13]
	Acyclic	B	P (linear) [13]	?	?
		F	?	?	?
		BF	?	?	?

Complexity summary for finding a hyperpath

			Edge-dom	Input-dom	Dom
Regular	Cyclic	B	P (linear)	P (linear)	P
		F	P	P	P
		BF	P	P	P
	Acyclic	B	P (linear)	P	P
		F	P	P	P
		BF	P	P	P
Forced Edge	Cyclic	B	NP-Hard [13]	?	NP-Hard [13]
		F	NP-Hard [13]	?	NP-Hard [13]
		BF	NP-Hard [13]	?	NP-Hard [13]
	Acyclic	B	P (linear) [13]	?	?
		F	NP-Hard [8]	?	NP-Hard [8]
		BF	NP-Hard [8]	?	NP-Hard [8]

[^0]: ${ }^{1}$ Jonathan Stempel and Jim Finkle. Yahoo says all three billion accounts hacked in 2013 data theft. 2017

[^1]: ${ }^{1}$ Jonathan Stempel and Jim Finkle. Yahoo says all three billion accounts hacked in 2013 data theft. 2017

[^2]: ${ }^{1}$ Jonathan Stempel and Jim Finkle. Yahoo says all three billion accounts hacked in 2013 data theft. 2017

[^3]: ${ }^{1}$ Jonathan Stempel and Jim Finkle. Yahoo says all three billion accounts hacked in 2013 data theft. 2017

[^4]: ${ }^{2}$ Brian Krebs. First American Financial Corp. Leaked Hundreds of Millions of Title Insurance Records. 2019

[^5]: ${ }^{2}$ Brian Krebs. First American Financial Corp. Leaked Hundreds of Millions of Title Insurance Records. 2019

[^6]: ${ }^{2}$ Brian Krebs. First American Financial Corp. Leaked Hundreds of Millions of Title Insurance Records. 2019

[^7]: ${ }^{5}$ Code, data and guidance at https://github.com/loicmiller/policy-verification

[^8]: ${ }^{5}$ Code, data and guidance at https://github.com/loicmiller/policy-verification

